On Time-Fractional Cylindrical Nonlinear Equation

被引:3
|
作者
Abdelwahed, H. G. [1 ]
ElShewy, E. K. [2 ]
Mahmoud, A. A. [2 ]
机构
[1] Prince Sattam Bin Abdul Aziz Univ, Dept Phys, Coll Sci & Humanitarian Studies, Al Kharj, Saudi Arabia
[2] Mansoura Univ, Dept Phys, Fac Sci, Theoret Phys Res Grp, Mansoura 35516, Egypt
关键词
ACOUSTIC SOLITARY WAVES; BEAM PLASMA SYSTEM; VORTEX ELECTRON-DISTRIBUTION; HIGHER-ORDER NONLINEARITY; DOUBLE-LAYERS; GENERATION; SOLITONS; IONS;
D O I
10.1088/0256-307X/33/11/115201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Properties of cylindrical electron acoustic solitons are studied in vortex plasmas. The modified cylindrical Korteweg-de Vries (KdV) equation is acquired and converted into the time fractional cylindrical modified KdV equation by Agrawal's analysis. Via the Adomian decomposition method, a cylindrical soliton solution to the equation is obtained. The cylindrical time fractional effect on the wave properties is investigated. Further, the increase of the fractional order of time alpha and hot to trapped electrons temperature alpha are minimized in both solitary width and amplitude. These influences on the structures of the soliton may be an alternative to the use of higher order perturbation analysis.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] On Time-Fractional Cylindrical Nonlinear Equation
    HGAbdelwahed
    EKElShewy
    AAMahmoud
    Chinese Physics Letters, 2016, 33 (11) : 66 - 70
  • [2] On Time-Fractional Cylindrical Nonlinear Equation
    H.G.Abdelwahed
    E.K.ElShewy
    A.A.Mahmoud
    Chinese Physics Letters, 2016, (11) : 66 - 70
  • [3] Cylindrical electron acoustic solitons for modified time-fractional nonlinear equation
    Abdelwahed, G.
    El-Shewy, E. K.
    Mahmoud, Abeer A.
    PHYSICS OF PLASMAS, 2017, 24 (08)
  • [4] On a nonlinear time-fractional cable equation
    Jleli, Mohamed
    Samet, Bessem
    AIMS MATHEMATICS, 2024, 9 (09): : 23584 - 23597
  • [5] Determination of a Nonlinear Coefficient in a Time-Fractional Diffusion Equation
    Zeki, Mustafa
    Tinaztepe, Ramazan
    Tatar, Salih
    Ulusoy, Suleyman
    Al-Hajj, Rami
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [7] Diffusivity identification in a nonlinear time-fractional diffusion equation
    Łukasz Płociniczak
    Fractional Calculus and Applied Analysis, 2016, 19 : 843 - 866
  • [8] Solutions to Time-Fractional Diffusion-Wave Equation in Cylindrical Coordinates
    Povstenko, Y. Z.
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [9] Solutions to Time-Fractional Diffusion-Wave Equation in Cylindrical Coordinates
    Y.Z. Povstenko
    Advances in Difference Equations, 2011
  • [10] Nonlinear dynamical analysis of a time-fractional Klein–Gordon equation
    Yusry O El-Dib
    Nasser S Elgazery
    Amal A Mady
    Pramana, 2021, 95