Estimates uniform in time for the transition probability of diffusions with small drift and for stochastically perturbed newton equations

被引:5
作者
Albeverio, S
Hilbert, A
Kolokoltsov, V
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[2] Ruhr Univ Bochum, Math Inst, D-44780 Bochum, Germany
[3] USI, Acc Arch, Mendrisio, Switzerland
[4] SERFIM, BiBoS, Locarno, Switzerland
[5] Lulea Tekn Univ, Math Inst, S-97187 Lulea, Sweden
[6] Moscow Inst New Technol, Moscow, Russia
[7] Nottingham Trent Univ, Nottingham NG1 4BU, England
关键词
diffusion processes; transition probability; Newton's law;
D O I
10.1023/A:1021665708716
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An estimate uniform in time fur the transition probability of diffusion processes with small drift is given. This also covers the case of a degenerate diffusion describing a stochastic perturbation of a particle moving according to the Newton's law. Moreover the random wave operator for such a particle is described and the analogue of asymptotic completeness is proven, the latter in the case of a sufficiently small drift.
引用
收藏
页码:293 / 300
页数:8
相关论文
共 13 条
[1]   LONGTIME BEHAVIOR OF NONLINEAR STOCHASTIC OSCILLATORS - THE ONE-DIMENSIONAL HAMILTONIAN CASE [J].
ALBEVERIO, S ;
KLAR, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (08) :4005-4027
[2]  
Albeverio S., 1992, STOCHASTICS STOCHAST, V39, P159
[3]  
ALBEVERIO S, 1997, STOCHASTICS STOCHAST, V60, P41
[4]  
ALBEVERIO S, 1999, POT ANAL
[5]  
[Anonymous], 1969, Probability and Mathematical Statistics
[6]  
KOLOKOLTSOV V, 1997, POT ANAL, V7, P750
[7]  
KOLOKOLTSOV V, 1998, P INT WORKSH ID BRIS, P285
[8]  
Kolokoltsov V. N., 1996, Journal of Dynamical and Control Systems, V2, P299, DOI 10.1007/BF02269422
[9]  
LIPSER RS, 1977, STAT RANDOM PROCESSE
[10]  
MARCUS L, 1988, J DIFFER EQUATIONS, V21, P288