PLANNING OF EXPERIMENTS FOR A NONAUTONOMOUS ORNSTEIN-UHLENBECK PROCESS

被引:2
作者
Lacko, Vladimir [1 ]
机构
[1] Comenius Univ, Dept Appl Math & Stat, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia
来源
PROBASTAT '11: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON PROBABILITY AND STATISTICS: DEDICATED TO PROFESSOR LUBOMIR KUBACEK IN RECOGNITION OF HIS EIGHTIETH BIRTHDAY | 2012年 / 51卷
关键词
exact design; product covariance structure; Ito stochastic differential equation; estimation; asymptotic information matrix; efficiency; REGRESSION PROBLEMS; SAMPLING DESIGNS; EQUIDISTANT;
D O I
10.2478/v10127-012-0011-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study exact optimal designs for processes governed by mean-reversion stochastic differential equations with a time dependent volatility and known mean-reversion speed. It turns out that any mean-reversion Ito process has a product covariance structure. We prove the existence of a nondegenerate optimal sampling design for the parameter estimation and derive the information matrix corresponding to the observation of the full path. The results are demonstrated on a process with exponential volatility.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 20 条
  • [1] Allen E., 2007, MODELING ITO STOCHAS, V22
  • [2] [Anonymous], 1993, OPTIMAL DESIGN EXPT
  • [3] Arnold L., 1974, Stochastic Differential Equations: Theory and Applications
  • [4] HARMAN R., OPTIMAL SAMPLING DES
  • [5] HARMAN R., 2009, P 6 ST PET WORKSH SI, V2, P1097
  • [6] Optimality of equidistant sampling designs for the Brownian motion with a quadratic drift
    Harman, Radoslav
    Stulajter, Frantisek
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (08) : 2750 - 2758
  • [7] ITO K., 1951, NAGOYA MATH J, V3, P55, DOI [DOI 10.1017/S0027763000012216, 10.1017/S0027763000012216]
  • [8] Equidistant and D-optimal designs for parameters of Ornstein-Uhlenbeck process
    Kiselak, Jozef
    Stehlik, Milan
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1388 - 1396
  • [9] Kunze M, 2010, T AM MATH SOC, V362, P169
  • [10] Lemons D. S., 2002, An Introduction to Stochastic Processes in Physics