Evaluation of Quantum Confinement Effect in Nanocrystal Si Dot Layer by Raman Spectroscopy

被引:1
|
作者
Mizukami, Y. [1 ]
Kosemura, D. [1 ]
Numasawa, Y. [1 ]
Ohshita, Y. [2 ]
Ogura, A. [1 ]
机构
[1] Meiji Univ, Sch Sci & Technol, Tama Ku, Kawasaki, Kanagawa, Japan
[2] Toyota Technol Inst, Tenpaku Ku, Nagoya, Aichi 468, Japan
关键词
Nanocrystal; UV Raman; Size Distribution; Stress; SILICON;
D O I
10.1166/jnn.2012.6810
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quantum confinement effect in the nanocrystal-Si (nc-Si) was evaluated by Raman spectroscopy. The nc-Si dot layers were fabricated by the H-2 plasma treatment for the nucleation site formation followed by the SiH4 irradiation for the nc-Si growth. Post-oxidation annealing was also performed to improve the crystalline quality. After post-oxidation annealing for 5 or 10 min, the asymmetric broadening on the lower frequency sides in Raman spectra were obtained, which can be attributed to the phonon confinement effect in nc-Si. Furthermore we confirmed that hydrostatic stress of approximately 500 MPa was induced in nc-Si after post-oxidation annealing.
引用
收藏
页码:8700 / 8703
页数:4
相关论文
共 50 条
  • [21] Confinement of an exciton in a quantum dot: effect of modified Kratzer potential
    R. Khordad
    Indian Journal of Physics, 2013, 87 : 623 - 628
  • [22] A semiconducting nanotube quantum dot: effect of the form of the confinement potential
    Roy, Mervyn
    Maksym, P. A.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 3, NO 11, 2006, 3 (11): : 3959 - +
  • [23] Quantum Confinement in the Spectral Response of n-Doped Germanium Quantum Dots Embedded in an Amorphous Si Layer for Quantum Dot-Based Solar Cells
    Parravicini, Jacopo
    Di Trapani, Francesco
    Nelson, Michael D.
    Rex, Zachary T.
    Beiter, Ryan D.
    Catelani, Tiziano
    Acciarri, Maurizio F.
    Podesta, Alessandro
    Lenardi, Cristina
    Binetti, Simona O.
    Di Vece, Marcel
    ACS APPLIED NANO MATERIALS, 2020, 3 (03) : 2813 - 2821
  • [24] The Effect of Quantum Dot Shape and Position on Electron Confinement in Dot-in-a-Well Structures
    Batenipour, N.
    Saghafi, K.
    Moravvej-Farshi, M. K.
    INEC: 2010 3RD INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2010, : 1153 - +
  • [25] Quantum confinement in Si and Ge nanostructures: Effect of crystallinity
    Barbagiovanni, Eric G.
    Lockwood, David J.
    Costa Filho, Raimundo N.
    Goncharova, Lyudmila V.
    Simpson, Peter J.
    PHOTONICS NORTH 2013, 2013, 8915
  • [26] Characterization of Nanocrystal Size Distribution using Raman Spectroscopy with a Multi-particle Phonon Confinement Model
    Dogan, Ilker
    van de Sanden, Mauritius C. M.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2015, (102): : 1 - 9
  • [27] QUANTUM CONFINEMENT OF HOLES IN SI1-XGEX/SI QUANTUM-WELLS STUDIED BY ADMITTANCE SPECTROSCOPY
    LU, F
    JIANG, JY
    SUN, HH
    GONG, DW
    ZHANG, XG
    WANG, X
    PHYSICAL REVIEW B, 1995, 51 (07): : 4213 - 4217
  • [28] Photoluminescence and Raman spectroscopy of Si/Si1-xGex quantum dots
    Tang, YS
    Torres, CMS
    Dietrich, B
    Kissinger, W
    Whall, TE
    Parker, EHC
    JOURNAL OF CRYSTAL GROWTH, 1995, 157 (1-4) : 280 - 284
  • [29] Quantum Confinement Regimes in CdTe Nanocrystals Probed by Single Dot Spectroscopy: From Strong Confinement to the Bulk Limit
    Tilchin, Jenya
    Rabouw, Freddy T.
    Isarov, Maya
    Vaxenburg, Roman
    Van Dijk-Moes, Relinde J. A.
    Lifshitz, Efrat
    Vanmaekelbergh, Daniel
    ACS NANO, 2015, 9 (08) : 7840 - 7845
  • [30] Pressure Effect on Si Quantum-Dot Potential
    Al-Douri, Y.
    Hashim, U.
    Ahmed, N. M.
    Sauli, Z.
    NANOSCIENCE AND NANOTECHNOLOGY, 2009, 1136 : 11 - 15