Mechanochemical Synthesis of Bimetallic NiCo Supported on a CeO2 Catalyst with Less Metal Loading for Non-Thermal Plasma Catalytic CO2 Hydrogenation

被引:14
作者
Chen, Huanhao [1 ]
Guo, Wei [1 ]
Fan, Xiaolei [2 ,3 ,4 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
[2] Univ Manchester, Sch Engn, Dept Chem Engn, Manchester M13 9PL, Lancs, England
[3] Nottingham Ningbo China Beacons Excellence Res &, Ningbo 315048, Peoples R China
[4] Zhejiang Univ, Inst Wenzhou, Wenzhou Key Lab Novel Optoelect & Nanomat, Wenzhou 325006, Peoples R China
来源
ACS ENGINEERING AU | 2022年 / 3卷 / 01期
基金
中国国家自然科学基金;
关键词
CO2; hydrogenation; plasma catalysis; bimetallic NiCo/CeO2 catalyst; less metal loading; mechanochemical synthesis; METHANATION; NANOPARTICLES; ZEOLITES; SURFACES;
D O I
10.1021/acsengineeringau.2c00032
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Non-thermal plasma (NTP) catalysis is a promising technology for CO2 valorization with renewable H-2, in which catalyst design is one of the key aspects to progress the hybrid technology. Herein, bimetallic NiCo supported on CeO2 catalysts, that is, NiCo/CeO2, were developed with less metal loading of similar to 2 wt % using mechanochemical synthesis for NTP-catalytic CO2 methanation. During the synthesis, different addition orders of Ni and Co precursors were investigated, and the results show that the NiCo1/CeO2-I catalyst (which was prepared by the simultaneous addition of Ni and Co precursors, protocol I) exhibited the highest CO2 conversion (similar to 60%) and CH4 selectivity/yield (similar to 80%/ similar to 50%), whereas the NiCo1/CeO2-II and NiCo1/CeO2-III catalysts (prepared by sequential addition protocols of II and III) showed very poor catalytic performance. Characterization results suggested that in protocol I, Ni and Co prefer to alloy, and concentrated oxygen vacancies on the CeO2 surface and high surface basicity are retained as well. Such properties of NiCo1/CeO2-I were responsible for CO2 activation and hydrogenation under NTP conditions, which was explained by the proposed mechanisms.
引用
收藏
页码:7 / 16
页数:10
相关论文
共 58 条
[1]   Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation [J].
Alrafei, Bachar ;
Polaert, Isabelle ;
Ledoux, Alain ;
Azzolina-Jury, Federico .
CATALYSIS TODAY, 2020, 346 :23-33
[2]   Chemical engineering aspects of plasma-assisted CO2 hydrogenation over nickel zeolites under partial vacuum [J].
Azzolina-Jury, Federico ;
Bento, Diogo ;
Henriques, Carlos ;
Thibault-Starzyk, Frederic .
JOURNAL OF CO2 UTILIZATION, 2017, 22 :97-109
[3]   Ignition of CO2 methanation using DBD-plasma catalysis in an adiabatic reactor [J].
Biset-Peiro, Marti ;
Guilera, Jordi ;
Andreu, Teresa .
CHEMICAL ENGINEERING JOURNAL, 2022, 433
[4]   Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power [J].
Bordet, Alexis ;
Lacroix, Lise-Marie ;
Fazzini, Pier-Francesco ;
Carrey, Julian ;
Soulantica, Katerina ;
Chaudret, Bruno .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (51) :15894-15898
[5]   Influence of the calcination temperature on the nano-structural properties, surface basicity, and catalytic behavior of alumina-supported lanthana samples [J].
Boukha, Zouhair ;
Fitian, Loubna ;
Lopez-Haro, Miguel ;
Mora, Manuel ;
Rafael Ruiz, Jose ;
Jimenez-Sanchidrian, Cesar ;
Blanco, Ginesa ;
Calvino, Jose J. ;
Cifredo, Gustavo A. ;
Trasobares, Susana ;
Bernal, Serafin .
JOURNAL OF CATALYSIS, 2010, 272 (01) :121-130
[6]   Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts [J].
Cardenas-Arenas, A. ;
Quindimil, A. ;
Davo-Quinonero, A. ;
Bailon-Garcia, E. ;
Lozano-Castello, D. ;
De-La-Torre, U. ;
Pereda-Ayo, B. ;
Gonzalez-Marcos, J. A. ;
Gonzalez-Velasco, J. R. ;
Bueno-Lopez, A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 265
[7]   Size-Tunable Ni Nanoparticles Supported on Surface-Modified, Cage-Type Mesoporous Silica as Highly Active Catalysts for CO2 Hydrogenation [J].
Chen, Ching-Shiun ;
Budi, Canggih Setya ;
Wu, Hung-Chi ;
Saikia, Diganta ;
Kao, Hsien-Ming .
ACS CATALYSIS, 2017, 7 (12) :8367-8381
[8]   CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: Recent progress and understanding [J].
Chen, Guoxing ;
Snyders, Rony ;
Britun, Nikolay .
JOURNAL OF CO2 UTILIZATION, 2021, 49
[9]   Recent advances in non-thermal plasma (NTP) catalysis towards C1 chemistry [J].
Chen, Huanhao ;
Mu, Yibing ;
Xu, Shanshan ;
Xu, Shaojun ;
Hardacre, Christopher ;
Fan, Xiaolei .
CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2020, 28 (08) :2010-2021
[10]   Effect of metal dispersion and support structure of Ni/silicalite-1 catalysts on non-thermal plasma (NTP) activated CO2 hydrogenation [J].
Chen, Huanhao ;
Goodarzi, Farnoosh ;
Mu, Yibing ;
Chansai, Sarayute ;
Mielby, Jerrik Jorgen ;
Mao, Boyang ;
Sooknoi, Tawan ;
Hardacre, Christopher ;
Kegnaes, Soren ;
Fan, Xiaolei .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 272