Early Semiconductor Anomaly Detection Based on Multivariate Time-Series Classification using multilayer Perceptron

被引:0
|
作者
Mellah, Samia [1 ]
Trardi, Youssef [1 ]
Graton, Guillaume [1 ,2 ]
Ananou, Bouchra [1 ]
El Adel, El Mostafa [1 ]
Ouladsine, Mustapha [1 ]
机构
[1] Aix Marseille Univ, Univ Toulon, CNRS, LIS UMR 7020, Ave Escadrille Normandie Niemen, F-13397 Marseille 20, France
[2] Ecole Cent Marseille, Technopole Chaleau Gombert, F-13451 Marseille 13, France
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 10期
关键词
Anomaly detection; Data-driven methods; Multivariate time-series analysis; Multilayer perceptron; Semiconductor manufacturing;
D O I
10.1016/j.ifacol.2022.10.202
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work is focused on the issue of semiconductor anomaly detection during the manufacturing process. It proposes an efficient multivariate time-series fault detection approach aiming to detect wafer anomalies at an early fabrication stage to reduce the yield loss. The raw data consist on eleven (11) multivariate time-series (MTS) measured for 150 seconds and collected during different levels of the fabrication process to describe the wafers status. First of all, the most useful information is extracted from each collected time-series (TS) data to handle the computational complexity of large-scale data processing. For that, three dimensionality reduction techniques, namely: (i) Independent Component Analysis (ICA), (ii) Principal Component Analysis (PCA), and (iii) Factor Analysis (FA) are used for comparison and optimization sake. The aim is to define the better technique allowing to keep only the meaningful information from each time-series. Thereafter, the extracted data is combined to build a new dataset which is used to fit and optimize a multilayer perceptron (MLP) to perform the anomaly detection. The very interesting obtained results show that the proposed approach is promising and could provide a precious decision-making support for abnormal wafer detection in the semiconductor manufacturing process. Copyright (C) 2022 The Authors.
引用
收藏
页码:3082 / 3087
页数:6
相关论文
共 50 条
  • [21] Enhancing multivariate time-series anomaly detection with positional encoding mechanisms in transformers
    Alioghli, Abdul Amir
    Okay, Feyza Yildirim
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [22] Anomaly Detection Method of Aircraft System using Multivariate Time Series Clustering and Classification Techniques
    Ben Slimene, Mohamed
    Ouali, Mohamed-Salah
    IFAC PAPERSONLINE, 2022, 55 (10): : 1582 - 1587
  • [23] Multivariate Time Series Anomaly Detection Method Based on mTranAD
    Zhang, Chuanlei
    Li, Yicong
    Li, Jie
    Li, Guixi
    Ma, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT IV, 2023, 14089 : 52 - 63
  • [24] CoRP: A Pattern-Based Anomaly Detection in Time-Series
    Ben Kraiem, Ines
    Ghozzi, Faiza
    Peninou, Andre
    Teste, Olivier
    ENTERPRISE INFORMATION SYSTEMS (ICEIS 2019), 2020, 378 : 424 - 442
  • [25] On the Exploration of Temporal Fusion Transformers for Anomaly Detection with Multivariate Aviation Time-Series Data
    Ayhan, Bulent
    Vargo, Erik P.
    Tang, Huang
    AEROSPACE, 2024, 11 (08)
  • [26] An enhanced abnormal information expression spatiotemporal model for anomaly detection in multivariate time-series
    Di Ge
    Yuhang Cheng
    Shuangshuang Cao
    Yanmei Ma
    Yanwen Wu
    Complex & Intelligent Systems, 2024, 10 : 2937 - 2950
  • [27] Unsupervised Multi-head Attention Autoencoder for Multivariate Time-Series Anomaly Detection
    Kim, Minseok
    Park, Sanghyun
    2024 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, IEEE BIGCOMP 2024, 2024, : 1 - 7
  • [28] An enhanced abnormal information expression spatiotemporal model for anomaly detection in multivariate time-series
    Ge, Di
    Cheng, Yuhang
    Cao, Shuangshuang
    Ma, Yanmei
    Wu, Yanwen
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 2937 - 2950
  • [29] From anomaly detection to classification with graph attention and transformer for multivariate time series
    Wang, Chaoyang
    Liu, Guangyu
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [30] Multivariate time-series anomaly detection via temporal convolutional and graph attention networks
    He, Qiang
    Wang, Guanqun
    Wang, Hengyou
    Chen, Linlin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 5953 - 5962