Numerical treatment of the strongly coupled nonlinear fractal-fractional Schrodinger equations through the shifted Chebyshev cardinal functions

被引:30
作者
Heydari, M. H. [1 ]
Atangana, A. [2 ]
Avazzadeh, Z. [3 ]
Yang, Y. [4 ]
机构
[1] Shiraz Univ Technol, Dept Math, Shiraz, Iran
[2] Univ Free State, Fac Nat & Agr Sci, Bloemfontein, South Africa
[3] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[4] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp,Informat Proc,Minist Edu, Xiangtan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractal-fractional derivative; Strongly coupled nonlinear fractal-fractional Schrodin-ger equations; Chebyshev cardinal func-tions (CCFs); Operational matrix (OM) of fractal-fractional derivative; STOCHASTIC DIFFERENTIAL-EQUATIONS; COLLOCATION METHOD; PLANCK EQUATIONS; SCHEME; WAVELETS;
D O I
10.1016/j.aej.2019.12.039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a new version of the strongly coupled nonlinear fractal-fractional Schr & ouml;-dinger equations is introduced by using the fractal-fractional derivatives in the Riemann-Liouville sense with Mittag-Leffler kernel. An accurate operational matrix method based on the shifted Chebyshev cardinal functions is established for solving this new class of problems. Along the way, a new operational matrix of fractal-fractional derivative is derived for these basis func-tions. The main characteristic of the proposed method is that it transforms solving the original problem to an algebraic system of equations by exploiting the operational matrix techniques. (C) 2019 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:2037 / 2052
页数:16
相关论文
共 35 条
[11]   Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrodinger equations [J].
Doha, E. H. ;
Bhrawy, A. H. ;
Abdelkawy, M. A. ;
Van Gorder, Robert A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 261 :244-255
[12]   Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations [J].
Eslami, Mostafa .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 285 :141-148
[13]   FAST FOURIER METHODS IN COMPUTATIONAL COMPLEX ANALYSIS [J].
HENRICI, P .
SIAM REVIEW, 1979, 21 (04) :481-527
[14]   Approximate solution to the time-space fractional cubic nonlinear Schrodinger equation [J].
Herzallah, Mohamed A. E. ;
Gepreel, Khaled A. .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (11) :5678-5685
[15]   Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana-Baleanu-Caputo variable-order fractional derivative [J].
Heydari, M. H. .
CHAOS SOLITONS & FRACTALS, 2020, 130
[16]   A cardinal approach for nonlinear variable-order time fractional Schrodinger equation defined by Atangana-Baleanu-Caputo derivative [J].
Heydari, M. H. ;
Atangana, A. .
CHAOS SOLITONS & FRACTALS, 2019, 128 :339-348
[17]   Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion [J].
Heydari, M. H. ;
Avazzadeh, Z. ;
Mahmoudi, M. R. .
CHAOS SOLITONS & FRACTALS, 2019, 124 :105-124
[18]   Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion [J].
Heydari, M. H. ;
Mahmoudi, M. R. ;
Shakiba, A. ;
Avazzadeh, Z. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 64 :98-121
[19]   A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations [J].
Heydari, Mohammad Hossein ;
Avazzadeh, Zakieh ;
Yang, Yin ;
Cattani, Carlo .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (01)
[20]   Chebyshev cardinal wavelets for nonlinear variable-order fractional quadratic integral equations [J].
Heydari, Mohammad Hossein .
APPLIED NUMERICAL MATHEMATICS, 2019, 144 :190-203