On the full Kostant-Toda system and the discrete Korteweg-de Vries equations

被引:12
作者
Barrios Rolania, D. [1 ]
Branquinho, A. [2 ]
Moreno, A. Foulquie [3 ]
机构
[1] Univ Politecn Madrid, Fac Informat, Boadilla Del Monte 28660, Spain
[2] Univ Coimbra, Dept Math, CMUC, P-3001454 Coimbra, Portugal
[3] Univ Aveiro, CIDMA, P-3800 Aveiro, Portugal
关键词
Operator theory; Orthogonal polynomials; Differential equations; Recurrence relations;
D O I
10.1016/j.jmaa.2012.12.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The relation between the solutions of the full Kostant-Toda lattice and the discrete Korteweg-de Vries equation is analyzed. A method for constructing solutions of these systems is given. As a consequence of the matricial interpretation of this method, the transform of Darboux is extended for general Hessenberg banded matrices. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:811 / 820
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 1998, THEORY MATRICES
[2]   Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation [J].
Aptekarev, AI ;
Branquinho, A ;
Marcellan, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 78 (01) :139-160
[3]   On the relation between the full Kostant-Toda lattice and multiple orthogonal polynomials [J].
Barrios Rolania, D. ;
Branquinho, A. ;
Moreno, A. Foulquie .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (01) :228-238
[4]   Dynamics and interpretation of some integrable systems via multiple orthogonal polynomials [J].
Barrios Rolania, D. ;
Branquinho, A. ;
Foulquie Moreno, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) :358-370
[5]   Complex high order Toda and Volterra lattices [J].
Barrios Rolania, D. ;
Branquinho, A. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (02) :197-213
[6]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[7]   ON THE TODA AND KAC-VANMOERBEKE SYSTEMS [J].
GESZTESY, F ;
HOLDEN, H ;
SIMON, B ;
ZHAO, Z .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 339 (02) :849-868
[8]  
Isaacson E., 1994, ANAL NUMERICAL METHO
[9]   3 INTEGRABLE HAMILTONIAN SYSTEMS CONNECTED WITH ISOSPECTRAL DEFORMATIONS [J].
MOSER, J .
ADVANCES IN MATHEMATICS, 1975, 16 (02) :197-220
[10]   On Toda lattices and orthogonal polynomials [J].
Peherstorfer, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) :519-534