Near-lossless and lossy compression of imaging spectrometer data: comparison of information extraction performance

被引:6
作者
Miguel, Agnieszka [1 ]
Riskin, Eve [2 ]
Ladner, Richard [3 ]
Barney, Dane [4 ]
机构
[1] Seattle Univ, Dept Elect & Comp Engn, 901 12th Ave,POB 222000, Seattle, WA 98122 USA
[2] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
[3] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[4] Double Negat, London, England
基金
美国国家科学基金会;
关键词
Hyperspectral compression; Imaging spectrometer; Coding; Near-lossless compression; Maximum absolute distortion; HYPERSPECTRAL IMAGERY; COMPLEXITY; ENTROPY; ONBOARD; ALGORITHM;
D O I
10.1007/s11760-010-0191-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate the ability to derive meaningful information from decompressed imaging spectrometer data. Hyperspectral images are compressed with near-lossless and lossy coding methods. Linear prediction between the bands is used in both cases. Each band is predicted by a previously transmitted band. The residual is formed by subtracting the prediction from the original data and then is compressed either with a near-lossless bit-plane coder or with the lossy JPEG2000 algorithm. We study the effects of these two types of compression on hyperspectral image processing such as mineral and vegetation content classification using whole- and mixed pixel analysis techniques. The results presented in this paper indicate that an efficient lossy coder outperforms near-lossless method in terms of its impact on final hyperspectral data applications.
引用
收藏
页码:597 / 611
页数:15
相关论文
共 40 条
  • [1] Hyperspectral image compression using entropy-constrained predictive trellis coded quantization
    Abousleman, GP
    Marcellin, MW
    Hunt, BR
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (04) : 566 - 573
  • [2] Aiazzi B, 2005, INT GEOSCI REMOTE SE, P132
  • [3] Aiazzi B, 2001, 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, P490, DOI 10.1109/ICIP.2001.958158
  • [4] Tradeoff between radiometric and spectral distortion in lossy compression of hyperspectral imagery
    Aiazzi, B
    Alparone, L
    Baronti, S
    Lastri, C
    Santurri, L
    Selva, M
    [J]. MATHEMATICS OF DATA/IMAGE CODING, COMPRESSION, AND ENCRYPTION VI, WITH APPLICATIONS, 2004, 5208 : 141 - 152
  • [5] Context modeling for near-lossless image coding
    Aiazzi, B
    Alparone, L
    Baronti, S
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (03) : 77 - 80
  • [6] Aiazzi B, 2000, IEEE IMAGE PROC, P148, DOI 10.1109/ICIP.2000.900916
  • [7] Near-lossless compression of 3-D optical data
    Aiazzi, B
    Alparone, L
    Baronti, S
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (11): : 2547 - 2557
  • [8] Aiazzi B., 2005, P SPIE MATH DATA IMA, V5915, P1
  • [9] Crisp and fuzzy adaptive spectral predictions for lossless and near-lossless compression of hyperspectral imagery
    Aiazzi, Bruno
    Alparone, Luciano
    Baronti, Stefano
    Lastri, Cinzia
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) : 532 - 536
  • [10] On the optimality of embedded deadzone scalar-quantizers for wavelet-based L-infinite-constrained image coding
    Alecu, A
    Munteanu, A
    Cornelis, J
    Dewitte, S
    Schelkens, P
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (03) : 367 - 370