Application of He's parameter-expansion method for oscillators with smooth odd nonlinearities

被引:30
作者
Darvishi, M. T. [2 ]
Karami, A. [2 ]
Shin, Byeong-Chun [1 ]
机构
[1] Chonnam Natl Univ, Dept Math, Kwangju 500757, South Korea
[2] Razi Univ, Dept Math, Kermanshah 67149, Iran
关键词
oscillator; Duffing-oscillator; parameter-expansion method; smooth nonlinearity;
D O I
10.1016/j.physleta.2008.06.058
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter applies He's parameter-expansion method to oscillators with smooth nonlinearities. The method does not depend upon small parameter assumption, hence it is very better than the perturbation method. In parameter-expansion method the solution and unknown frequency of oscillation are expanded in a series by a bookkeeping parameter. By imposing the non-secularity condition at each order in the expansion the method provides different approximations to both the solution and the frequency of oscillation. One iteration step provides an approximate solution which is valid for the whole solution domain, The method can be easily extended to other nonlinear oscillations. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5381 / 5384
页数:4
相关论文
共 28 条
[1]   Self-excited systems: Analytical determination of limit cycles [J].
D'Acunto, Mario .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :719-724
[2]   The numerical simulation for stiff systems of ordinary differential equations [J].
Darvishi, M. T. ;
Khani, F. ;
Soliman, A. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (7-8) :1055-1063
[3]   Numerical and explicit solutions of the fifth-order Korteweg-de Vries equations [J].
Darvishi, M. T. ;
Khani, F. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (05) :2484-2490
[4]   Application of He's homotopy perturbation method to stiff systems of ordinary differential equations [J].
Darvishi, Mohammad Taghi ;
Khani, Farzad .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (1-2) :19-23
[5]  
DARVISHI MT, INT J COMPU IN PRESS
[6]   Application of Exp-function method for nonlinear evolution equations with variable coefficients [J].
El-Wakil, S. A. ;
Madkour, M. A. ;
Abdou, M. A. .
PHYSICS LETTERS A, 2007, 369 (1-2) :62-69
[7]   Variational iteration method - a kind of non-linear analytical technique: Some examples [J].
He, JH .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (04) :699-708
[9]   Construction of solitary solution and compacton-like solution by variational iteration method [J].
He, JH ;
Wu, XH .
CHAOS SOLITONS & FRACTALS, 2006, 29 (01) :108-113
[10]   Determination of limit cycles for strongly nonlinear oscillators [J].
He, JH .
PHYSICAL REVIEW LETTERS, 2003, 90 (17) :3