Heat Flow on Alexandrov Spaces

被引:70
|
作者
Gigli, Nicola [1 ]
Kuwada, Kazumasa [1 ,2 ]
Ohta, Shin-Ichi [3 ]
机构
[1] Univ Bonn, Inst Angew Math, Bonn, Germany
[2] Ochanomizu Univ, Grad Sch Humanities & Sci, Bunkyo Ku, Tokyo 1128610, Japan
[3] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
METRIC-MEASURE-SPACES; RICCI CURVATURE; DIRICHLET SPACES; GRADIENT FLOWS; GEOMETRY; INEQUALITIES; UNIQUENESS; EXISTENCE; EQUATIONS; SOBOLEV;
D O I
10.1002/cpa.21431
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that on compact Alexandrov spaces with curvature bounded below the gradient flow of the Dirichlet energy in the L-2-space produces the same evolution as the gradient flow of the relative entropy in the L-2-Wasserstein space. This means that the heat flow is well-defined by either one of the two gradient flows. Combining properties of these flows, we are able to deduce the Lipschitz continuity of the heat kernel as well as Bakry-Emery gradient estimates and the Gamma(2)-condition. Our identification is established by purely metric means, unlike preceding results relying on PDE techniques. Our approach generalizes to the case of heat flow with drift. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:307 / 331
页数:25
相关论文
共 50 条
  • [1] Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces
    Kazuhiro Kuwae
    Yoshiroh Machigashira
    Takashi Shioya
    Mathematische Zeitschrift, 2001, 238 : 269 - 316
  • [2] Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces
    Kuwae, K
    Machigashira, Y
    Shioya, T
    MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (02) : 269 - 316
  • [3] Heat Kernel Comparison on Alexandrov Spaces with Curvature Bounded Below
    Max-K. von Renesse
    Potential Analysis, 2004, 21 : 151 - 176
  • [4] Heat kernel comparison on Alexandrov spaces with curvature bounded below
    Von Renesse, MK
    POTENTIAL ANALYSIS, 2004, 21 (02) : 151 - 176
  • [5] Metric-measure boundary and geodesic flow on Alexandrov spaces
    Kapovitch, Vitali
    Lytchak, Alexander
    Petrunin, Anton
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (01) : 29 - 62
  • [6] Nilpotency, almost nonnegative curvature, and the gradient flow on Alexandrov spaces
    Kapovitch, Vitali
    Petrunin, Anton
    Tuschmann, Wilderich
    ANNALS OF MATHEMATICS, 2010, 171 (01) : 343 - 373
  • [7] Isospectral Alexandrov spaces
    Engel, Alexander
    Weilandt, Martin
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 44 (04) : 501 - 515
  • [8] Isospectral Alexandrov spaces
    Alexander Engel
    Martin Weilandt
    Annals of Global Analysis and Geometry, 2013, 44 : 501 - 515
  • [9] THE PLATEAU PROBLEM IN ALEXANDROV SPACES
    Mese, Chikako
    Zulkowski, Patrick R.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2010, 85 (02) : 315 - 356
  • [10] VOLUME COMPARISON FOR ALEXANDROV SPACES
    SHTEINGOLD, S
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (04) : 1349 - 1357