How Critical Are the van der Waals Interactions in Polymer Crystals?

被引:63
|
作者
Liu, Chun-Sheng [1 ]
Pilania, Ghanshyam [1 ]
Wang, Chenchen [1 ]
Ramprasad, Ramamurthy [1 ]
机构
[1] Univ Connecticut, Inst Mat Sci, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2012年 / 116卷 / 37期
关键词
POLYETHYLENE; ADSORPTION;
D O I
10.1021/jp3005844
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
van der Waals (vdW) interactions play a prominent role in polymer crystallization. However, density functional theory (DFT) computations that utilize conventional (semi)local exchange correlation functionals are unable to account for vdW interactions adequately and hence lead to poor predictions of equilibrium structures, densities, cohesive energies, and bulk moduli of polymeric crystals. This study therefore applies two forms of dispersion corrections to DFT, using either the Grimme (DFT-D3/D2) or the Tkatchenko and Scheffler (DFT-TS) approaches. We critically evaluate the relative performance of these two approaches in predicting structural, energetic, and elastic properties for a wide range of polymer crystals and also compare it with conventional electron exchange correlation functionals (LDA, PBE, and PW91). Our results show that although the conventional functionals either systematically underestimate (e.g., LDA) or overestimate (e.g., PBE and PW91) the lattice parameters that control the polymer interchain interactions in a crystal, the dispersion-corrected functionals consistently provide a better prediction of the structural parameters. In a relative sense, however, the D3 and TS schemes are superior to the D2 approach owing to the environment-dependent atomic dispersion coefficients implicit in the D3 and TS treatments (we do note though that the D2 scheme already constitutes a significant improvement over the (semi)local functionals). Our results not only elucidate the importance of dispersion corrections in the accurate determination of the structural properties of the prototypical polymers considered but also provide a benchmark for comparing other procedures that might be used for including vdW interactions in such systems.
引用
收藏
页码:9347 / 9352
页数:6
相关论文
共 50 条
  • [31] INTEGRATION OF MULTIPLET VAN DER WAALS INTERACTIONS
    LANGBEIN, D
    JOURNAL OF PHYSICS PART A GENERAL, 1971, 4 (04): : 471 - &
  • [32] The van der Waals interactions of concentric nanotubes
    Schröder, E
    Hyldgaard, P
    SURFACE SCIENCE, 2003, 532 : 880 - 885
  • [33] van der Waals interactions in a magnetodielectric medium
    Spagnolo, S.
    Dalvit, D. A. R.
    Milonni, P. W.
    PHYSICAL REVIEW A, 2007, 75 (05):
  • [34] VAN DER WAALS INTERACTIONS AND PACKING OF MOLECULAR CRYSTALS .4. ORTHORHOMBIC SULPHUR
    GIGLIO, E
    LIQUORI, AM
    MAZZARELLA, L
    NUOVO CIMENTO B, 1968, 56 (01): : 57 - +
  • [35] Linear boundaries of the overlap ranges of specific and van der Waals interactions in molecular crystals
    Zefirov, YV
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2001, 46 (04) : 573 - 576
  • [36] Cohesive laws for van der Waals interactions of super carbon nanotube/polymer composites
    Liu, Xia
    Yang, Qing-Sheng
    He, Xiao-Qiao
    Liew, Kim -Meow
    MECHANICS RESEARCH COMMUNICATIONS, 2016, 72 : 33 - 40
  • [37] Hyperspectral Nanoimaging of van der Waals Polaritonic Crystals
    Alfaro-Mozaz, F. J.
    Rodrigo, S. G.
    Velez, S.
    Dolado, I
    Govyadinov, A.
    Alonso-Gonzalez, P.
    Casanova, F.
    Hueso, L. E.
    Martin-Moreno, L.
    Hillenbrand, R.
    Nikitin, A. Y.
    NANO LETTERS, 2021, 21 (17) : 7109 - 7115
  • [38] VAN DER WAALS INTERACTION AND PACKING OF MOLECULAR CRYSTALS
    GIGLIO, E
    LIQUORI, AM
    ACTA CRYSTALLOGRAPHICA, 1967, 22 : 437 - &
  • [39] WANNIER EXCITONS IN SIMPLE VAN DER WAALS CRYSTALS
    KNOX, RS
    RADIATION RESEARCH, 1963, 20 (01) : 77 - &
  • [40] A crossover in anisotropic nanomechanochemistry of van der Waals crystals
    Shimamura, Kohei
    Misawa, Masaaki
    Li, Ying
    Kalia, Rajiv K.
    Nakano, Aiichiro
    Shimojo, Fuyuki
    Vashishta, Priya
    APPLIED PHYSICS LETTERS, 2015, 107 (23)