TransCluster: A Cell-Type Identification Method for single-cell RNA-Seq data using deep learning based on transformer

被引:12
作者
Song, Tao [1 ,2 ]
Dai, Huanhuan [1 ]
Wang, Shuang [1 ]
Wang, Gan [1 ]
Zhang, Xudong [1 ]
Zhang, Ying [1 ]
Jiao, Linfang [1 ]
机构
[1] China Univ Petr East China, Coll Comp Sci & Technol, Qingdao, Peoples R China
[2] Univ Politecn Madrid, Fac Comp Sci, Dept Artificial Intelligence, Campus Montegancedo, Boadilla Del Monte, Madrid, Spain
基金
中国国家自然科学基金;
关键词
cell-type identification; single-cell sequencing data; transformer; neural network; deep learning;
D O I
10.3389/fgene.2022.1038919
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recent advances in single-cell RNA sequencing (scRNA-seq) have accelerated the development of techniques to classify thousands of cells through transcriptome profiling. As more and more scRNA-seq data become available, supervised cell type classification methods using externally well-annotated source data become more popular than unsupervised clustering algorithms. However, accurate cellular annotation of single cell transcription data remains a significant challenge. Here, we propose a hybrid network structure called TransCluster, which uses linear discriminant analysis and a modified Transformer to enhance feature learning. It is a cell-type identification tool for single-cell transcriptomic maps. It shows high accuracy and robustness in many cell data sets of different human tissues. It is superior to other known methods in external test data set. To our knowledge, TransCluster is the first attempt to use Transformer for annotating cell types of scRNA-seq, which greatly improves the accuracy of cell-type identification.
引用
收藏
页数:10
相关论文
共 43 条
[1]   Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage [J].
Aran, Dvir ;
Looney, Agnieszka P. ;
Liu, Leqian ;
Wu, Esther ;
Fong, Valerie ;
Hsu, Austin ;
Chak, Suzanna ;
Naikawadi, Ram P. ;
Wolters, Paul J. ;
Abate, Adam R. ;
Butte, Atul J. ;
Bhattacharya, Mallar .
NATURE IMMUNOLOGY, 2019, 20 (02) :163-+
[2]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[3]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[4]  
Gibney E, 2015, NATURE, V518, P465, DOI 10.1038/518465a
[5]  
Gortler J., 2022, CHI C HUMAN FACTORS
[6]   Robust Adaptive Linear Discriminant Analysis with Bidirectional Reconstruction Constraint [J].
Guo, Jipeng ;
Sun, Yanfeng ;
Gao, Junbin ;
Hu, Yongli ;
Yin, Baocai .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2020, 14 (06)
[7]   SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis [J].
Guo, Minzhe ;
Wang, Hui ;
Potter, S. Steven ;
Whitsett, Jeffrey A. ;
Xu, Yan .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (11)
[8]   Construction of a human cell landscape at single-cell level [J].
Han, Xiaoping ;
Zhou, Ziming ;
Fei, Lijiang ;
Sun, Huiyu ;
Wang, Renying ;
Chen, Yao ;
Chen, Haide ;
Wang, Jingjing ;
Tang, Huanna ;
Ge, Wenhao ;
Zhou, Yincong ;
Ye, Fang ;
Jiang, Mengmeng ;
Wu, Junqing ;
Xiao, Yanyu ;
Jia, Xiaoning ;
Zhang, Tingyue ;
Ma, Xiaojie ;
Zhang, Qi ;
Bai, Xueli ;
Lai, Shujing ;
Yu, Chengxuan ;
Zhu, Lijun ;
Lin, Rui ;
Gao, Yuchi ;
Wang, Min ;
Wu, Yiqing ;
Zhang, Jianming ;
Zhan, Renya ;
Zhu, Saiyong ;
Hu, Hailan ;
Wang, Changchun ;
Chen, Ming ;
Huang, He ;
Liang, Tingbo ;
Chen, Jianghua ;
Wang, Weilin ;
Zhang, Dan ;
Guo, Guoji .
NATURE, 2020, 581 (7808) :303-+
[9]   A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications [J].
Haque, Ashraful ;
Engel, Jessica ;
Teichmann, Sarah A. ;
Lonnberg, Tapio .
GENOME MEDICINE, 2017, 9
[10]  
Hastie T., 2009, The Elements of Statistical Learning: Data Mining, Inference and Prediction, V2nd, DOI [10.1007/978-0-387-84858-7, DOI 10.1007/978-0-387-84858-7]