Quantitative reducibility of Gevrey quasi-periodic cocycles and its applications

被引:0
|
作者
Li, Xianzhe [1 ,2 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
国家重点研发计划;
关键词
Gevrey class; long range operator; pure point spectrum; interval spectrum; reducibility theory; spectral gap; SCHRODINGER-OPERATORS; ROTATION NUMBER; HOLDER CONTINUITY; LYAPUNOV EXPONENT; LOCALIZATION; SPECTRUM;
D O I
10.1088/1361-6544/ac98ed
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a quantitative version of strong almost reducibility result for SL(2, R) quasi-periodic cocycle close to a constant in the Gevrey class. We prove that, if the frequency is Diophantine, the long range operator has pure point spectrum with sub-exponentially decaying eigenfunctions for almost all phases; for the one dimensional quasi-periodic Schrodinger operators with small Gevrey potentials, the length of spectral gaps decays sub-exponentially with respect to its labelling; and the spectrum is an interval for discrete Schrodinger operators acting on Z(d) with small separable potentials.
引用
收藏
页码:6124 / 6155
页数:32
相关论文
共 50 条
  • [31] LYAPUNOV EXPONENTS OF DISCRETE QUASI-PERIODIC GEVREY SCHRODINGER EQUATIONS
    Geng, Wenmeng
    Tao, Kai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (06): : 2977 - 2996
  • [32] Continuity of the Lyapunov exponent for analytic quasi-periodic cocycles with singularities
    Jitomirskaya, S.
    Marx, C. A.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2011, 10 (01) : 129 - 146
  • [33] ON THE LYAPUNOV EXPONENT FOR SOME QUASI-PERIODIC COCYCLES WITH LARGE PARAMETER
    Ding, Bowen
    Liang, Jinhao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (10) : 3099 - 3119
  • [34] Subcritical behavior for quasi-periodic Schrodinger cocycles with trigonometric potentials
    Marx, Christoph A.
    Shou, Laura H.
    Wellens, Jake L.
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (01) : 123 - 163
  • [35] Continuity, positivity and simplicity of the Lyapunov exponents for quasi-periodic cocycles
    Duarte, Pedro
    Klein, Silvius
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (07) : 2051 - 2106
  • [36] Continuity of the Lyapunov exponent for analytic quasi-periodic cocycles with singularities
    S. Jitomirskaya
    C. A. Marx
    Journal of Fixed Point Theory and Applications, 2011, 10 : 129 - 146
  • [37] Space of Quasi-Periodic Limit Functions and Its Applications
    Xie, Rui
    Xia, Zhinan
    Liu, Junwei
    MATHEMATICS, 2019, 7 (11)
  • [38] Analyticity of the Lyapunov exponents of random products of quasi-periodic cocycles
    Bezerra, Jamerson
    Sanchez, Adriana
    Tall, El Hadji Yaya
    NONLINEARITY, 2023, 36 (06) : 3467 - 3482
  • [39] Reducibility of ultra-differentiable quasi-periodic linear systems
    Zhang, Xiangyuan
    Zhang, Dongfeng
    MATHEMATISCHE NACHRICHTEN, 2025,
  • [40] Reducibility of one-dimensional quasi-periodic Schrodinger equations
    Geng, Jiansheng
    Zhao, Zhiyan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (03): : 436 - 453