A Batched Expensive Multiobjective Optimization Based on Constrained Decomposition with Grids

被引:0
作者
Zhang, Feng [1 ]
Cai, Xinye [1 ]
Fan, Zhun [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China
[2] Shantou Univ, Sch Engn, Dept Elect Engn, Shantou, Guangdong, Peoples R China
来源
2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019) | 2019年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
expensive multiobjective optimization; constrained decomposition with grids; lower confidence bound criteria; gaussian process model; hypervolume; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A batched constrained decomposition with grids (BCDG) is proposed for expensive multiobjective optimization problems. In this algorithm, each objective function is approximated by a Gaussian process model and CDG-MOEA is used to optimize a candidate population. Finally, we use Hypervolume Indicator to select some better points from the candidate population for evaluation. In the process of CDG-MOEA optimizing candidate solutions and using Hypervolume Indicator to select candidate solutions for evaluation, we use Gaussian process lower confidence bound criteria to consider the uncertainty of Gaussian process prediction. Experimental study on some special test problems shows that BCDG can effectively solve some special expensive multiobjective optimization problems.
引用
收藏
页码:2081 / 2087
页数:7
相关论文
共 50 条
[21]   A Constrained Sampling Assisted Differential Evolution for Expensive Optimization [J].
Wei, Feng-Feng ;
Chen, Tai-You ;
Shi, Xuan-Li ;
Chen, Wei-Neng .
2023 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE, ICACI, 2023,
[22]   Multiple dynamic penalties based on decomposition for constrained optimization [J].
Dang, Qianlong .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
[23]   Multiobjective-Based Constraint-Handling Technique for Evolutionary Constrained Multiobjective Optimization: A New Perspective [J].
Liu, Zhi-Zhong ;
Qin, Yunchuan ;
Song, Wu ;
Zhang, Jinyuan ;
Li, Kenli .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (05) :1370-1384
[24]   Decomposition of a Multiobjective Optimization Problem into a Number of Simple Multiobjective Subproblems [J].
Liu, Hai-Lin ;
Gu, Fangqing ;
Zhang, Qingfu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (03) :450-455
[25]   Two-Stage Multiobjective Evolution Strategy for Constrained Multiobjective Optimization [J].
Zhang, Kai ;
Xu, Zhiwei ;
Yen, Gary G. ;
Zhang, Ling .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (01) :17-31
[26]   An XGBoost-assisted evolutionary algorithm for expensive multiobjective optimization problems [J].
Mao, Feiqiao ;
Chen, Ming ;
Zhong, Kaihang ;
Zeng, Jiyu ;
Liang, Zhengping .
INFORMATION SCIENCES, 2024, 666
[27]   Multiproblem Surrogates: Transfer Evolutionary Multiobjective Optimization of Computationally Expensive Problems [J].
Min, Alan Tan Wei ;
Ong, Yew-Soon ;
Gupta, Abhishek ;
Goh, Chi-Keong .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (01) :15-28
[28]   Matching-Based Selection With Incomplete Lists for Decomposition Multiobjective Optimization [J].
Wu, Mengyuan ;
Li, Ke ;
Kwong, Sam ;
Zhou, Yu ;
Zhang, Qingfu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (04) :554-568
[29]   An Evolutionary Multitasking Optimization Framework for Constrained Multiobjective Optimization Problems [J].
Qiao, Kangjia ;
Yu, Kunjie ;
Qu, Boyang ;
Liang, Jing ;
Song, Hui ;
Yue, Caitong .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (02) :263-277
[30]   MOEA/D with gradient-enhanced kriging for expensive multiobjective optimization [J].
Liu, Fei ;
Zhang, Qingfu ;
Han, Zhonghua .
NATURAL COMPUTING, 2023, 22 (02) :329-339