Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations

被引:49
|
作者
Wang, JinRong [2 ]
Feckan, Michal [1 ,3 ]
Zhou, Yong [4 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[2] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[3] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
[4] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional differential equations; Asymptotically periodic solution; Existence; INTEGRODIFFERENTIAL EQUATIONS; GLOBAL EXISTENCE; BANACH-SPACES; BEHAVIOR;
D O I
10.1016/j.cnsns.2012.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the final value theorem of Laplace transform, it is firstly shown that nonhomogeneous fractional Cauchy problem does not have nonzero periodic solution. Secondly, two basic existence and uniqueness results for asymptotically periodic solution of semilinear fractional Cauchy problem in an asymptotically periodic functions space. Furthermore, existence and uniqueness results are extended to a closed, nonempty and convex set which is a subset of a Frechet space. Some examples are given to illustrate the results. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:246 / 256
页数:11
相关论文
共 50 条
  • [41] Existence of S-asymptotically ω-periodic solutions for fractional order functional integro-differential equations with infinite delay
    Cuevas, Claudio
    de Souza, Julio Cesar
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1683 - 1689
  • [42] Asymptotically almost periodic solutions of abstract retarded functional differential equations of first order
    Henriquez, Hernan R.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2441 - 2454
  • [43] Existence of S-asymptotically ω-periodic solutions to abstract integro-differential equations
    Carvalho dos Santos, Jose Paulo
    Henriquez, Hernan R.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 109 - 118
  • [44] Asymptotically almost periodic solutions for some partial differential inclusions in α-norm
    Alia, Mohamed
    El Matloub, Jaouad
    Ezzinbi, Khalil
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (04)
  • [45] Periodic solutions of abstract neutral functional differential equations
    Henriquez, Hernan R.
    Pierri, Michelle
    Prokopczyk, Andrea
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) : 608 - 621
  • [46] Asymptotically almost periodic solutions of abstract retarded functional differential equations of second order
    Henriquez, Hernan R.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (05): : 797 - 822
  • [47] S-ASYMPTOTICALLY ω-PERIODIC MILD SOLUTIONS AND STABILITY ANALYSIS OF HILFER FRACTIONAL EVOLUTION EQUATIONS
    Bedi, Pallavi
    Kumar, Anoop
    Abdeljawad, Thabet
    Khan, Aziz
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (04): : 733 - 748
  • [48] ALMOST PERIODIC SOLUTIONS AND STABLE SOLUTIONS FOR STOCHASTIC DIFFERENTIAL EQUATIONS
    Li, Yong
    Liu, Zhenxin
    Wang, Wenhe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (11): : 5927 - 5944
  • [49] Asymptotically almost periodic mild solutions to a class of Weyl-like fractional difference equations
    Cao, Junfei
    Samet, Bessem
    Zhou, Yong
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [50] ASYMPTOTICALLY PERIODIC BEHAVIOR OF SOLUTIONS OF FRACTIONAL EVOLUTION EQUATIONS OF ORDER 1 < α < 2
    Ren, Lulu
    Wang, Jinrong
    O'Regan, Donal
    MATHEMATICA SLOVACA, 2019, 69 (03) : 599 - 610