Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations

被引:49
|
作者
Wang, JinRong [2 ]
Feckan, Michal [1 ,3 ]
Zhou, Yong [4 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[2] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[3] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
[4] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional differential equations; Asymptotically periodic solution; Existence; INTEGRODIFFERENTIAL EQUATIONS; GLOBAL EXISTENCE; BANACH-SPACES; BEHAVIOR;
D O I
10.1016/j.cnsns.2012.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the final value theorem of Laplace transform, it is firstly shown that nonhomogeneous fractional Cauchy problem does not have nonzero periodic solution. Secondly, two basic existence and uniqueness results for asymptotically periodic solution of semilinear fractional Cauchy problem in an asymptotically periodic functions space. Furthermore, existence and uniqueness results are extended to a closed, nonempty and convex set which is a subset of a Frechet space. Some examples are given to illustrate the results. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:246 / 256
页数:11
相关论文
共 50 条
  • [31] S-ASYMPTOTICALLY PERIODIC SOLUTIONS FOR PARTIAL DIFFERENTIAL EQUATIONS WITH FINITE DELAY
    Dimbour, William
    Mophou, Gisele
    N'Guerekata, Gaston M.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [32] Asymptotically almost periodic solutions for abstract neutral integro-differential equations
    Hernandez, Eduardo
    Pierri, Michelle
    Bena, Maria Aparecida
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) : 8963 - 8972
  • [33] WEIGHTED PSEUDO ALMOST AUTOMORPHIC AND S-ASYMPTOTICALLY ω-PERIODIC SOLUTIONS TO FRACTIONAL DIFFERENCE-DIFFERENTIAL EQUATIONS
    Alvarez, Edgardo
    Lizama, Carlos
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [34] ON THE S-ASYMPTOTICALLY ω-PERIODIC MILD SOLUTIONS FOR MULTI-TERM TIME FRACTIONAL MEASURE DIFFERENTIAL EQUATIONS
    Gou, Haide
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 62 (02) : 569 - 590
  • [35] Asymptotically periodic solutions of second order difference equations
    Migda, Janusz
    Migda, Malgorzata
    Zbaszyniak, Zenon
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 350 : 181 - 189
  • [36] Asymptotically periodic solutions of Volterra system of difference equations
    Diblik, Josef
    Schmeidel, Ewa
    Ruzickova, Miroslava
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) : 2854 - 2867
  • [37] ASYMPTOTICALLY ALMOST PERIODIC AND ALMOST PERIODIC SOLUTIONS FOR A CLASS OF PARTIAL INTEGRODIFFERENTIAL EQUATIONS
    Hernandez M, Eduardo
    Dos Santos, Jose Paulo C.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [38] Asymptotically almost periodic and almost periodic solutions for partial neutral integrodifferential equations
    Henriquez, Hernan
    Hernandez M, Eduardo
    dos Santos, Jose C.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (03): : 363 - 375
  • [39] Asymptotically periodic solutions of a partial differential equation with memory
    Chang, Jung-Chan
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (02) : 1119 - 1144
  • [40] PERIODIC SOLUTIONS FOR NONLINEAR FRACTIONAL DIFFERENTIAL SYSTEMS
    Abbas, Said
    Benchohra, Mouffak
    Bouriah, Soufyane
    Nieto, Juan J.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2018, 10 (03): : 299 - 316