Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno's model

被引:96
作者
Tahmasebi, Ali [1 ]
Mahdavi, Mahboobe [2 ]
Ghalambaz, Mohammad [3 ]
机构
[1] Shahid Chamran Univ Ahvaz, Dept Mech Engn, Ahvaz, Iran
[2] Gannon Univ, Dept Mech Engn, Erie, PA USA
[3] Islamic Azad Univ, Dezful Branch, Dept Mech Engn, Dezful, Iran
关键词
ENTROPY GENERATION; SQUARE ENCLOSURE; FLOW; FLUID; BOUNDARY; ENHANCEMENT; SIMULATION; LAYER;
D O I
10.1080/10407782.2017.1422632
中图分类号
O414.1 [热力学];
学科分类号
摘要
The natural convection heat transfer in a cavity filled with three layers of solid, porous medium, and free fluid is addressed. The porous medium and free fluid layers are filled with a nanofluid. The porous layer is modeled using the local thermal nonequilibrium (LTNE) model, considering the temperature difference between the solid porous matrix and the nanofluid phases. The nanofluid is modeled using the Buongiorno's model incorporating the thermophoresis and Brownian motion effects. The governing equations are transformed into a set of nondimensional partial differential equations, and then solved using finite element method in a nonuniform grid. The effects of various nondimensional parameters are discussed. The results showed that the Brownian motion and thermophoresis effects result in significant concentration gradients of nanoparticles in the porous and free fluid layers. The increase in Rayleigh (Ra), Darcy (Da), the thermal conductivity ratios for the solid wall and solid porous matrix, i.e., K-r and R-k, enhanced the average Nusselt number. The increase in the convection interaction heat transfer parameter between the solid porous matrix and the nanofluid in the pores (H) increases the average Nusselt number in the solid porous matrix but decreases the average Nusselt number in the nanofluid phase of the porous layer.
引用
收藏
页码:254 / 276
页数:23
相关论文
共 48 条
[1]   Analysis of natural convection and entropy generation in a cavity filled with multi-layers of porous medium and nanofluid with a heat generation [J].
Al-Zamily, Ali Meerali Jasim .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 106 :1218-1231
[2]   Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer [J].
Alazmi, B ;
Vafai, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (09) :1735-1749
[3]   Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity [J].
Alsabery, A. I. ;
Chamkha, A. J. ;
Saleh, H. ;
Hashim, I. ;
Chanane, B. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 470 :20-38
[4]  
[Anonymous], 1993, An introduction to the finite element method
[5]   Effects of thermal boundary conditions on natural convection flows within a square cavity [J].
Basak, Tanmay ;
Roy, S. ;
Balakrishnan, A. R. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (23-24) :4525-4535
[6]   Natural convection flows in porous trapezoidal enclosures with various inclination angles [J].
Basak, Tanmay ;
Roy, S. ;
Singh, Amit ;
Balakrishnan, A. R. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (19-20) :4612-4623
[7]   Free convection in a square porous cavity using a thermal nonequilibrium model [J].
Baytas, AC ;
Pop, L .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2002, 41 (09) :861-870
[8]   NATURAL-CONVECTION FLOW AND HEAT-TRANSFER BETWEEN A FLUID LAYER AND A POROUS LAYER INSIDE A RECTANGULAR ENCLOSURE [J].
BECKERMANN, C ;
RAMADHYANI, S ;
VISKANTA, R .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1987, 109 (02) :363-370
[9]   A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains [J].
Betchen, L ;
Straatman, AG ;
Thompson, BE .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2006, 49 (06) :543-565
[10]   Heat transfer and natural convection of nanofluids in porous media [J].
Bourantas, G. C. ;
Skouras, E. D. ;
Loukopoulos, V. C. ;
Burganos, V. N. .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2014, 43 :45-56