Covariant noncommutative field theory

被引:0
作者
Estrada-Jimenez, S. [1 ]
Garcia-Compean, H. [2 ,3 ]
Obregon, O. [4 ]
Ramirez, C. [5 ]
机构
[1] Univ Autonoma Chiapas, Fac Ingn, Calle 4A Ote Nte 1428, Tuxtla Gutierrez, Chiapas, Mexico
[2] Inst Politecn Nacl, Ctr Investigac Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
[3] Inst Politecn Nacl, Ctr Investigac Estudios Avanzados, PIIT, Apodaca 66600, Spain
[4] Univ Guanajuato, Inst Fis, Leon 37150, Mexico
[5] Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Puebla 72000, Mexico
来源
PARTICLES AND FIELDS: XI MEXICAN WORKSHOP ON PARTICLES AND FIELDS | 2008年 / 1026卷
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.
引用
收藏
页码:20 / +
页数:2
相关论文
共 28 条
  • [1] Noncommutative geometry and gravity
    Aschieri, Paolo
    Dimitrijevic, Marija
    Meyer, Frank
    Wess, Julius
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (06) : 1883 - 1911
  • [2] Twisted gauge theories
    Aschieri, Paolo
    Dimitrijevic, Marija
    Meyer, Frank
    Schraml, Stefan
    Wess, Julius
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2006, 78 (01) : 61 - 71
  • [3] BANADOS O, 2001, PHYS REV D, V64
  • [4] Noncommutative deformation of four-dimensional Einstein gravity
    Cardella, MA
    Zanon, D
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (08) : L95 - L103
  • [5] On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT
    Chaichian, M
    Kulish, PP
    Nishijima, K
    Tureanu, A
    [J]. PHYSICS LETTERS B, 2004, 604 (1-2) : 98 - 102
  • [6] Deforming Einstein's gravity
    Chamseddine, AH
    [J]. PHYSICS LETTERS B, 2001, 504 (1-2) : 33 - 37
  • [7] Complexified gravity in noncommutative spaces
    Chamseddine, AH
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 218 (02) : 283 - 292
  • [8] Connes A., 1994, NONCOMMUTATIVE GEOME
  • [9] DITO G, 2002, IRMA LECT MATH THEOR, V1, P9
  • [10] Noncommutative field theory
    Douglas, MR
    Nekrasov, NA
    [J]. REVIEWS OF MODERN PHYSICS, 2001, 73 (04) : 977 - 1029