Upper bounds of the energy of triangle-free graphs in terms of matching number

被引:8
作者
Tian, Fenglei [1 ]
Wong, Dein [2 ]
机构
[1] Qufu Normal Univ, Inst Operat Res, Sch Management, Rizhao, Peoples R China
[2] China Univ Min & Technol, Sch Math, Xuzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph energy; matching number; rank; CHROMATIC NUMBER; TREES;
D O I
10.1080/03081087.2017.1408556
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E(G) be the energy of a graph G, which is defined as the sum of the absolute values of all eigenvalues of G. If G contains no cycle , then it is called a triangle-free graph. In this paper, we investigate the upper bounds of the energy for triangle-free graphs in terms of their matching number and characterize all the extremal graphs attaining the upper bounds. In addition, we establish a relation between graph energy and rank.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 21 条
[1]   Some relations between rank, chromatic number and energy of graphs [J].
Akbari, S. ;
Ghorbani, E. ;
Zare, S. .
DISCRETE MATHEMATICS, 2009, 309 (03) :601-605
[2]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[3]   Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy [J].
Caporossi, G ;
Cvetkovic, D ;
Gutman, I ;
Hansen, P .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (06) :984-996
[4]   Graph energy change due to edge deletion [J].
Day, Jane ;
So, Wasin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) :2070-2078
[5]   ON THE THEORY OF THE MATCHING POLYNOMIAL [J].
GODSIL, CD ;
GUTMAN, I .
JOURNAL OF GRAPH THEORY, 1981, 5 (02) :137-144
[6]   ACYCLIC SYSTEMS WITH EXTREMAL HUCKEL PI-ELECTRON ENERGY [J].
GUTMAN, I .
THEORETICA CHIMICA ACTA, 1977, 45 (02) :79-87
[7]  
Gutman I., 2012, Mathematical concepts in organic chemistry
[8]  
Gutman I., 1978, BER MATH STAT SEKT F, V103, P1, DOI DOI 10.1088/1742-5468/2008/10/P10008
[9]   On graphs whose energy exceeds the number of vertices [J].
Gutman, Ivan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (11-12) :2670-2677
[10]   Maximal energy graphs [J].
Koolen, JH ;
Moulton, V .
ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (01) :47-52