Partial (co)actions of Hopf algebras and partial Hopf-Galois theory

被引:73
作者
Caenepeel, S. [1 ]
Janssen, K. [1 ]
机构
[1] Vrije Univ Brussels, Fac Engn Sci, Brussels, Belgium
关键词
coring; entwining structure; Galois extension; smash product;
D O I
10.1080/00927870802110334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce partial (co)actions of a Hopf algebra H on an algebra. To this end, we introduce first the notion of lax coring, generalizing Wisbauer's notion of weak coring. We also have the dual notion of lax ring. Several duality results are given, and we develop Galois theory for partial H-comodule algebras.
引用
收藏
页码:2923 / 2946
页数:24
相关论文
共 18 条
[1]   Coalgebra bundles [J].
Brzezinski, T ;
Majid, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (02) :467-492
[2]   The structure of corings: Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties [J].
Brzezinski, T .
ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (04) :389-410
[3]  
Brzezinski T., 2003, LONDON MATH SOC LECT, V309
[4]  
Caenepeel S, 2007, REV ROUM MATH PURES, V52, P151
[5]   Morita theory for corings and cleft entwining structures [J].
Caenepeel, S ;
Vercruysse, J ;
Wang, SH .
JOURNAL OF ALGEBRA, 2004, 276 (01) :210-235
[6]  
CAENEPEEL S, 2005, P INT C MATH ITS APP, P117
[7]  
Caenepeel S., 2004, Fields Inst. Commun., V43, P163
[8]  
Caenepeel S., 2000, Contemp. Math., V267, P31
[9]  
Caenepeel S., 2002, Lecture Notes in Math, V1787
[10]  
DeMeyer F., 1971, LECT NOTES MATH, V181