A control-relevant multivariable system identification methodology based on orthogonal multifrequency input perturbations

被引:0
|
作者
Rivera, DE [1 ]
Zong, S [1 ]
Ling, WM [1 ]
机构
[1] Arizona State Univ, Dept Chem Bio & Mat Engn, Tempe, AZ 85287 USA
来源
(SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3 | 1998年
关键词
input signals; system identification; control-oriented modeling; frequency response methods; high-purity distillation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a MIMO system identification method utilizing an orthogonal multifrequency input perturbation which we call the "zippered" Schroeder-phased signal. Guidelines for the design of a plant-friendly "zippered" Schroeder-phased input are presented based on a priori knowledge of open-loop time constants and closed-loop system response requirements of the system to be identified. A frequency response estimate is then obtained by applying discrete Fourier transforms (DFTs) to the data. Control-relevant parameter estimation via a frequency-weighted curvefitting problem formulation tailored for orthogonal signal perturbations is presented. Application of the methodology is shown for the case of Model Predictive Control of a high purity binary distillation column, a nonlinear, highly interactive system.
引用
收藏
页码:573 / 578
页数:6
相关论文
共 50 条
  • [1] A methodology for control-relevant nonlinear system identification using restricted complexity models
    Ling, WM
    Rivera, DE
    JOURNAL OF PROCESS CONTROL, 2001, 11 (02) : 209 - 222
  • [2] Control-relevant model identification of reactive extrusion processes
    Garge, Swapnil C.
    Wetzel, Mark D.
    Ogunnaike, Babatunde A.
    JOURNAL OF PROCESS CONTROL, 2012, 22 (08) : 1457 - 1467
  • [3] Multivariable feedback relevant system identification of a wafer stepper system
    de Callafon, RA
    Van den Hof, PMJ
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2001, 9 (02) : 381 - 390
  • [4] Identification of Control-Relevant Diesel Engine Models Using a Local Linear Parametric Approach
    van Keulen, Thijs
    Huijben, Lars
    Oomen, Tom
    IFAC PAPERSONLINE, 2017, 50 (01): : 7836 - 7841
  • [5] System identification based on stochastic input model
    Wang, Xi
    Cui, Jia-Rui
    Zhang, Bo
    Hu, Guang-Da
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2015, 37 : 118 - 124
  • [6] Identification test design for multivariable model-based control: An industrial perspective
    Darby, Mark L.
    Nikolaou, Michael
    CONTROL ENGINEERING PRACTICE, 2014, 22 : 165 - 180
  • [7] System Identification Based on Orthogonal Polynomial Regression Analysis Method
    Su Weijun
    Yang Huating
    Liu Zaiwen
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 1441 - 1446
  • [8] System identification and multivariable control design for a Satellite UltraQuiet Isolation Technology Experiment (SUITE)
    Joshi, A
    Kim, W
    EUROPEAN JOURNAL OF CONTROL, 2004, 10 (02) : 174 - 186
  • [9] Subspace-based multivariable identification and robust control of the MIT SERC interferometer testbed
    Keviczky, T
    Lantos, B
    IMTC/2001: PROCEEDINGS OF THE 18TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3: REDISCOVERING MEASUREMENT IN THE AGE OF INFORMATICS, 2001, : 20 - 25
  • [10] Eliciting Scientific Delusions as a Control Education Methodology with Examples on the System Identification
    Chernyshov, K. R.
    Jharko, E. Ph
    IFAC PAPERSONLINE, 2019, 52 (09): : 9 - 14