Visual object tracking using sparse context-aware spatio-temporal correlation filter

被引:8
作者
Elayaperumal, Dinesh [1 ]
Joo, Young Hoon [1 ]
机构
[1] Kunsan Natl Univ, Sch IT Informat & Control Engn, 588 Daehak Ro, Gunsan Si 54150, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Context; ADMM; Spatio-temporal; l(1) regularization; Visual tracking; Correlation filter;
D O I
10.1016/j.jvcir.2020.102820
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel sparse context-aware spatio-temporal correlation filter tracker (SCAST) method for robust visual object tracking. Different from the existing trackers, this paper introduce an l(1) multi-scale regularization parameter-based correlation filter that reduces the boundary effect due to partial occlusions, illumination and scale variations. At each iteration, the l(1) regularization parameter is updated through spatial knowledge of each correlation filter coefficient. Besides, the contextual information acquired from the target region can lead to determining the accurate localization of the target. Moreover, contextual information has combined with spatio-temporal factor to achieve the better performance. Further, an objective function is designed with system constraints to ensure the applicability of the model and the optimal solution is derived by utilizing the alternating direction method of multiplier, which leads to low computational cost. Finally, the feasibility and superiority of proposed tracker algorithm is evaluated through three benchmark dataset: OTB-2013, OTB-2015, and TempleColor-128. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Hierarchical Convolutional Features for Visual Tracking [J].
Ma, Chao ;
Huang, Jia-Bin ;
Yang, Xiaokang ;
Yang, Ming-Hsuan .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :3074-3082
[32]   Non-Markovian Globally Consistent Multi-Object Tracking [J].
Maksai, Andrii ;
Wang, Xinchao ;
Fleuret, Francois ;
Fua, Pascal .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2563-2573
[33]   Robust Visual Tracking using l1 Minimization [J].
Mei, Xue ;
Ling, Haibin .
2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, :1436-1443
[34]   Context-Aware Correlation Filter Tracking [J].
Mueller, Matthias ;
Smith, Neil ;
Ghanem, Bernard .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1387-1395
[35]   Incremental learning for robust visual tracking [J].
Ross, David A. ;
Lim, Jongwoo ;
Lin, Ruei-Sung ;
Yang, Ming-Hsuan .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 77 (1-3) :125-141
[36]   Robust Visual Tracking via Sparsity-Induced Subspace Learning [J].
Sui, Yao ;
Zhang, Shunli ;
Zhang, Li .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :4686-4700
[37]   Weighted correlation filters guidance with spatial-temporal attention for online multi-object tracking [J].
Tian, Sheng ;
Zou, Lian ;
Fan, Cian ;
Chen, Liqiong .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 63
[38]   Online Object Tracking With Sparse Prototypes [J].
Wang, Dong ;
Lu, Huchuan ;
Yang, Ming-Hsuan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) :314-325
[39]   Visual object tracking via a manifold regularized discriminative dual dictionary model [J].
Wang, Lingfeng ;
Pan, Chunhong .
PATTERN RECOGNITION, 2019, 91 :272-280
[40]  
Wang X., 2015, IEEE T PATTERN ANAL, V38, P2312