Visual object tracking using sparse context-aware spatio-temporal correlation filter

被引:7
作者
Elayaperumal, Dinesh [1 ]
Joo, Young Hoon [1 ]
机构
[1] Kunsan Natl Univ, Sch IT Informat & Control Engn, 588 Daehak Ro, Gunsan Si 54150, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Context; ADMM; Spatio-temporal; l(1) regularization; Visual tracking; Correlation filter;
D O I
10.1016/j.jvcir.2020.102820
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel sparse context-aware spatio-temporal correlation filter tracker (SCAST) method for robust visual object tracking. Different from the existing trackers, this paper introduce an l(1) multi-scale regularization parameter-based correlation filter that reduces the boundary effect due to partial occlusions, illumination and scale variations. At each iteration, the l(1) regularization parameter is updated through spatial knowledge of each correlation filter coefficient. Besides, the contextual information acquired from the target region can lead to determining the accurate localization of the target. Moreover, contextual information has combined with spatio-temporal factor to achieve the better performance. Further, an objective function is designed with system constraints to ensure the applicability of the model and the optimal solution is derived by utilizing the alternating direction method of multiplier, which leads to low computational cost. Finally, the feasibility and superiority of proposed tracker algorithm is evaluated through three benchmark dataset: OTB-2013, OTB-2015, and TempleColor-128. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Intelligent Unmanned Anti-theft System Using Network Camera
    Kim, Jong Sun
    Yeom, Dong Hae
    Joo, Young Hoon
    Park, Jin Bae
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2010, 8 (05) : 967 - 974
  • [22] Learning adaptively windowed correlation filters for robust tracking
    Kuai, Yangliu
    Wen, Gongjian
    Li, Dongdong
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 51 : 104 - 111
  • [23] High Performance Visual Tracking with Siamese Region Proposal Network
    Li, Bo
    Yan, Junjie
    Wu, Wei
    Zhu, Zheng
    Hu, Xiaolin
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8971 - 8980
  • [24] Learning target-aware correlation filters for visual tracking
    Li, Dongdong
    Wen, Gongjian
    Kuai, Yangliu
    Xiao, Jingjing
    Porikli, Fatih
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 58 : 149 - 159
  • [25] Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking
    Li, Feng
    Tian, Cheng
    Zuo, Wangmeng
    Zhang, Lei
    Yang, Ming-Hsuan
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4904 - 4913
  • [26] Visual tracking via context-aware local sparse appearance model
    Li, Guiji
    Peng, Manman
    Nai, Ke
    Li, Zhiyong
    Li, Keqin
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 92 - 105
  • [27] A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration
    Li, Yang
    Zhu, Jianke
    [J]. COMPUTER VISION - ECCV 2014 WORKSHOPS, PT II, 2015, 8926 : 254 - 265
  • [28] Encoding Color Information for Visual Tracking: Algorithms and Benchmark
    Liang, Pengpeng
    Blasch, Erik
    Ling, Haibin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5630 - 5644
  • [29] Multi-level context-adaptive correlation tracking
    Liu, Peng
    Liu, Chang
    Zhao, Wei
    Tang, Xianglong
    [J]. PATTERN RECOGNITION, 2019, 87 : 216 - 225
  • [30] Ma C, 2019, IEEE T PATTERN ANAL, V41, P2709, DOI [10.1109/TPAMI.2018.2865311, 10.1109/INTMAG.2018.8508195]