Visual object tracking using sparse context-aware spatio-temporal correlation filter

被引:7
作者
Elayaperumal, Dinesh [1 ]
Joo, Young Hoon [1 ]
机构
[1] Kunsan Natl Univ, Sch IT Informat & Control Engn, 588 Daehak Ro, Gunsan Si 54150, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Context; ADMM; Spatio-temporal; l(1) regularization; Visual tracking; Correlation filter;
D O I
10.1016/j.jvcir.2020.102820
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel sparse context-aware spatio-temporal correlation filter tracker (SCAST) method for robust visual object tracking. Different from the existing trackers, this paper introduce an l(1) multi-scale regularization parameter-based correlation filter that reduces the boundary effect due to partial occlusions, illumination and scale variations. At each iteration, the l(1) regularization parameter is updated through spatial knowledge of each correlation filter coefficient. Besides, the contextual information acquired from the target region can lead to determining the accurate localization of the target. Moreover, contextual information has combined with spatio-temporal factor to achieve the better performance. Further, an objective function is designed with system constraints to ensure the applicability of the model and the optimal solution is derived by utilizing the alternating direction method of multiplier, which leads to low computational cost. Finally, the feasibility and superiority of proposed tracker algorithm is evaluated through three benchmark dataset: OTB-2013, OTB-2015, and TempleColor-128. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] [Anonymous], 2014, BRIT MACH VIS C NOTT
  • [2] [Anonymous], 2017, IEEE INT C COMP VIS
  • [3] Robust Object Tracking with Online Multiple Instance Learning
    Babenko, Boris
    Yang, Ming-Hsuan
    Belongie, Serge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1619 - 1632
  • [4] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [5] Real-time and robust object tracking in video via low-rank coherency analysis in feature space
    Chen, Chenglizhao
    Li, Shuai
    Qin, Hong
    Hao, Aimin
    [J]. PATTERN RECOGNITION, 2015, 48 (09) : 2885 - 2905
  • [6] Crammer K, 2006, J MACH LEARN RES, V7, P551
  • [7] Learning Spatially Regularized Correlation Filters for Visual Tracking
    Danelljan, Martin
    Hager, Gustav
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4310 - 4318
  • [8] Dinh TB, 2011, PROC CVPR IEEE, P1177, DOI 10.1109/CVPR.2011.5995733
  • [9] Gao J, 2014, LECT NOTES COMPUT SC, V8691, P188, DOI 10.1007/978-3-319-10578-9_13
  • [10] P2T: Part-to-Target Tracking via Deep Regression Learning
    Gao, Junyu
    Zhang, Tianzhu
    Yang, Xiaoshan
    Xu, Changsheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 3074 - 3086