Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet

被引:234
|
作者
Cheng, Cheng [1 ]
Zhang Liye [1 ]
Zhan, Ru-Juan [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, CAS Key Lab Basic Plasma Phys, Sch Sci, Hefei 230026, Anhui, Peoples R China
来源
SURFACE & COATINGS TECHNOLOGY | 2006年 / 200卷 / 24期
关键词
roughness; scanning electron microscopy; Fourier transform infrared spectroscopy; polypropylene;
D O I
10.1016/j.surfcoat.2005.09.033
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A new cold plasma jet has been developed for surface modification of materials at atmospheric pressure. This new cold plasma jet generator is composed of two concentric cylindrical all-metal tube electrodes. The argon is fed into the inner-grounded electrode, the outer electrode is connected to the high-voltage power supply and covered with a layer of dielectric, and then a stable cold plasma jet is formed and blown out into air. The plasma gas temperature is only 25-30 degrees C. Preliminary results are presented on the modification of polypropylene (PP) and polyethylene terephthalate (PET) fibres by this cold plasma jet. The water contact angle of these materials is found to decrease after plasma treatment and it will recover a little in two months. The chemical changes on the surface of polymers are studied by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) is used to study the changes in surface feature of polymers due to plasma treatment. The hydrophilicity and surface structure of these materials after plasma treatment are discussed. The results show that such a. plasma jet is effective. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:6659 / 6665
页数:7
相关论文
共 50 条
  • [1] Wettability modification of polystyrene surface by cold atmospheric pressure plasma jet
    M. Bakhshzadmahmoudi
    S. Jamali
    E. Ahmadi
    Colloid and Polymer Science, 2022, 300 : 103 - 110
  • [2] Wettability modification of polystyrene surface by cold atmospheric pressure plasma jet
    Bakhshzadmahmoudi, M.
    Jamali, S.
    Ahmadi, E.
    COLLOID AND POLYMER SCIENCE, 2022, 300 (02) : 103 - 110
  • [3] Cold arc-plasma jet under atmospheric pressure for surface modification
    Toshifuji, J
    Katsumata, T
    Takikawa, H
    Sakakibara, T
    Shimizu, I
    SURFACE & COATINGS TECHNOLOGY, 2003, 171 (1-3): : 302 - 306
  • [4] Surface modification of polymeric materials by cold atmospheric plasma jet
    Kostov, K. G.
    Nishime, T. M. C.
    Castro, A. H. R.
    Toth, A.
    Hein, L. R. O.
    APPLIED SURFACE SCIENCE, 2014, 314 : 367 - 375
  • [5] Experimental Study of Cold Atmospheric Pressure Plasma Jet and Its Application in the Surface Modification of Polypropylene
    Baniya, Hom Bahadur
    Guragain, Rajesh Prakash
    Baniya, Binod
    Subedi, Deepak Prasad
    REVIEWS OF ADHESION AND ADHESIVES, 2020, 8 (02): : 1 - 14
  • [6] Surface modification of polyethylene in an argon atmospheric pressure plasma jet
    Van Deynse, A.
    Cools, P.
    Leys, C.
    Morent, R.
    De Geyter, N.
    SURFACE & COATINGS TECHNOLOGY, 2015, 276 : 384 - 390
  • [7] SURFACE MODIFICATION OF HIGH DENSITY POLYETHYLENE AND POLYCARBONATE BY ATMOSPHERIC PRESSURE COLD ARGON/OXYGEN PLASMA JET
    Shrestha, R.
    Gurung, J. P.
    Shrestha, A.
    Subedi, D. P.
    PLASMA AND FUSION SCIENCE: FROM FUNDAMENTAL RESEARCH TO TECHNOLOGICAL APPLICATIONS, 2018, : 397 - 405
  • [8] Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure
    Motrescu, Iuliana
    Nagatsu, Masaaki
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (19) : 12528 - 12533
  • [9] Surface Modification of Poly-ε-Caprolactone with an Atmospheric Pressure Plasma Jet
    De Geyter, N.
    Sarani, A.
    Jacobs, T.
    Nikiforov, A. Yu.
    Desmet, T.
    Dubruel, P.
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2013, 33 (01) : 165 - 175
  • [10] Surface Modification of Poly-ε-Caprolactone with an Atmospheric Pressure Plasma Jet
    N. De Geyter
    A. Sarani
    T. Jacobs
    A. Yu. Nikiforov
    T. Desmet
    P. Dubruel
    Plasma Chemistry and Plasma Processing, 2013, 33 : 165 - 175