Controllable synthesis and photoelectric property of hexagonal SnS2 nanoflakes by Triton X-100 assisted hydrothermal method

被引:28
作者
Geng, Huijuan [1 ]
Su, Yanjie [1 ]
Wei, Hao [1 ]
Xu, Minghan [1 ]
Wei, Liangming [1 ]
Yang, Zhi [1 ]
Zhang, Yafei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Res Inst Micro Nano Sci & Technol, Key Lab Thin Film & Microfabricat, Minist Educ, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Hexagonal SnS2 nanoflakes; Hydrothermal method; Triton X-100; Controllable synthesis; Photoelectric property; LITHIUM; SCALE;
D O I
10.1016/j.matlet.2013.08.092
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tin disulfide (SnS2) has attracted considerate interests due to its outstanding properties that stem from the unique crystalline structure. Herein, hexagonal SnS2 nanoflakes have been demonstrated to be synthesized via a facile, one-step hydrothermal method using SnCl2 center dot H2O and thioacetamide as raw materials and Triton X-100 as a surfactant. Experimental results show that the as-synthesized SnS2 is hexagonal nanoflakes with lateral size of about 100 nm and the bandgap is from 2.136 to 2.289 eV. Moreover, the observations indicate that Triton X-100 plays a dominative role in controlling the morphology of SnS2, which can enable a viable route toward the controllable synthesis of SnS2 nanoflakes. Meanwhile, the photoelectric device based on the hexagonal SnS2 nanoflakes has been fabricated and exhibits a good photoelectric response under UV illumination. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:204 / 207
页数:4
相关论文
共 18 条
[1]   Nano-flower and nano-wall SnS2 films fabricated with controllable shape and size by the PECVD method [J].
Cheng, L. L. ;
Liu, M. H. ;
Wang, S. C. ;
Wang, M. X. ;
Wang, G. D. ;
Zhou, Q. Y. ;
Chen, Z. Q. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (01)
[2]  
Debtanu D, 2013, NANOTECHNOLOGY, V24
[3]   A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries [J].
Du, Yaping ;
Yin, Zongyou ;
Rui, Xianhong ;
Zeng, Zhiyuan ;
Wu, Xue-Jun ;
Liu, Juqing ;
Zhu, Yuanyuan ;
Zhu, Jixin ;
Huang, Xiao ;
Yan, Qingyu ;
Zhang, Hua .
NANOSCALE, 2013, 5 (04) :1456-1459
[4]   Synthesis, characterization and application of SnSx (x=1, 2) nanoparticles [J].
Gou, XL ;
Chen, J ;
Shen, PW .
MATERIALS CHEMISTRY AND PHYSICS, 2005, 93 (2-3) :557-566
[5]   Synthesis and structural transformations of colloidal 2D layered metal chalcogenide nanocrystals [J].
Han, Jae Hyo ;
Lee, Sujeong ;
Cheon, Jinwoo .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) :2581-2591
[6]   Synthesis of SnS2/SnS fullerene-like nanoparticles:: A superlattice with polyhedral shape [J].
Hong, SY ;
Popovitz-Biro, R ;
Prior, Y ;
Tenne, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (34) :10470-10474
[7]   Synthesis and Characterization of Tin Disulfide (SnS2) Nanowires [J].
Lin, Ya-Ting ;
Shi, Jen-Bin ;
Chen, Yu-Cheng ;
Chen, Chih-Jung ;
Wu, Po-Feng .
NANOSCALE RESEARCH LETTERS, 2009, 4 (07) :694-698
[8]   Plate-like SnS2 nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties [J].
Ma, Jianmin ;
Lei, Danni ;
Mei, Lin ;
Duan, Xiaochuan ;
Li, Qiuhong ;
Wang, Taihong ;
Zheng, Wenjun .
CRYSTENGCOMM, 2012, 14 (03) :832-836
[9]   Synthesis of Copious Amounts of SnS2 and SnS2/SnS Nanotubes with Ordered Superstructures [J].
Radovsky, Gal ;
Popovitz-Biro, Ronit ;
Staiger, Matthias ;
Gartsman, Konstantin ;
Thomsen, Christian ;
Lorenz, Tommy ;
Seifert, Gotthard ;
Tenne, Reshef .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (51) :12316-12320
[10]   Two-Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries [J].
Seo, Jung-Wook ;
Jang, Jung-tak ;
Park, Seung-Won ;
Kim, Chunjoong ;
Park, Byungwoo ;
Cheon, Jinwoo .
ADVANCED MATERIALS, 2008, 20 (22) :4269-4273