The Chromatic Number of the Disjointness Graph of the Double Chain

被引:0
作者
Fabila-Monroy, Ruy [1 ]
Hidalgo-Toscano, Carlos [2 ]
Leanos, Jesus [3 ]
Lomeli-Haro, Mario [4 ]
机构
[1] Inst Politecn Nacl, Dept Matemat, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico
[2] Ctr Invest & Innovac Tecnol Informac & Comunicac, Mexico City, DF, Mexico
[3] Univ Autonoma Zacatecas, Unidad Acad Matemat, Zacatecas, Zacatecas, Mexico
[4] Univ Autonoma San Luis Potosi, Inst Fis, San Luis Potosi, San Luis Potosi, Mexico
基金
芬兰科学院;
关键词
chromatic number; double chain; edge disjointness graph; TRIANGULATIONS; BOUNDS;
D O I
10.23638/DMTCS-22-1-11
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let P be a set of n >= 4 points in general position in the plane. Consider all the closed straight line segments with both endpoints in P. Suppose that these segments are colored with the rule that disjoint segments receive different colors. In this paper we show that if P is the point configuration known as the double chain, with k points in the upper convex chain and l >= k points in the lower convex chain, then k + l - left perpendicular root 2l + 1/4 - 1/2 right perpendicular colors are needed and that this number is sufficient.
引用
收藏
页数:10
相关论文
共 50 条