The Chromatic Number of the Disjointness Graph of the Double Chain

被引:0
作者
Fabila-Monroy, Ruy [1 ]
Hidalgo-Toscano, Carlos [2 ]
Leanos, Jesus [3 ]
Lomeli-Haro, Mario [4 ]
机构
[1] Inst Politecn Nacl, Dept Matemat, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico
[2] Ctr Invest & Innovac Tecnol Informac & Comunicac, Mexico City, DF, Mexico
[3] Univ Autonoma Zacatecas, Unidad Acad Matemat, Zacatecas, Zacatecas, Mexico
[4] Univ Autonoma San Luis Potosi, Inst Fis, San Luis Potosi, San Luis Potosi, Mexico
基金
芬兰科学院;
关键词
chromatic number; double chain; edge disjointness graph; TRIANGULATIONS; BOUNDS;
D O I
10.23638/DMTCS-22-1-11
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let P be a set of n >= 4 points in general position in the plane. Consider all the closed straight line segments with both endpoints in P. Suppose that these segments are colored with the rule that disjoint segments receive different colors. In this paper we show that if P is the point configuration known as the double chain, with k points in the upper convex chain and l >= k points in the lower convex chain, then k + l - left perpendicular root 2l + 1/4 - 1/2 right perpendicular colors are needed and that this number is sufficient.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Chromatic number and clique number of subgraphs of regular graph of matrix algebras
    Akbari, S.
    Aryapoor, M.
    Jamaali, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2419 - 2424
  • [22] Vizing Bound for the Chromatic Number on Some Graph Classes
    T. Karthick
    Frédéric Maffray
    Graphs and Combinatorics, 2016, 32 : 1447 - 1460
  • [23] ON THE b-CHROMATIC NUMBER OF SOME GRAPH PRODUCTS
    Jakovac, Marko
    Peterin, Iztok
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2012, 49 (02) : 156 - 169
  • [24] RESULTS ON GRUNDY CHROMATIC NUMBER OF JOIN GRAPH OF GRAPHS
    Maragatham, R. Stella
    Subramanian, A.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 40 (01): : 87 - 100
  • [25] On the Chromatic Number of a Random 5-Regular Graph
    Diaz, J.
    Kaporis, A. C.
    Kemkes, G. D.
    Kirousis, L. M.
    Perez, X.
    Wormald, N.
    JOURNAL OF GRAPH THEORY, 2009, 61 (03) : 157 - 191
  • [26] Efficient DNA algorithms for chromatic number of graph problems
    Liu Xikui
    Li Yan
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 450 - +
  • [27] Spectral lower bounds for the quantum chromatic number of a graph
    Elphick, Clive
    Wocjan, Pawel
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 168 : 338 - 347
  • [28] A graph with cover degeneracy less than chromatic number
    Pyatkin, AV
    JOURNAL OF GRAPH THEORY, 2001, 37 (04) : 243 - 246
  • [29] Vizing Bound for the Chromatic Number on Some Graph Classes
    Karthick, T.
    Maffray, Frederic
    GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1447 - 1460
  • [30] On the Chromatic Number of the Visibility Graph of a Set of Points in the Plane
    Jan Kára
    Attila Pór
    David R. Wood
    Discrete & Computational Geometry, 2005, 34 : 497 - 506