The Chromatic Number of the Disjointness Graph of the Double Chain

被引:0
|
作者
Fabila-Monroy, Ruy [1 ]
Hidalgo-Toscano, Carlos [2 ]
Leanos, Jesus [3 ]
Lomeli-Haro, Mario [4 ]
机构
[1] Inst Politecn Nacl, Dept Matemat, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico
[2] Ctr Invest & Innovac Tecnol Informac & Comunicac, Mexico City, DF, Mexico
[3] Univ Autonoma Zacatecas, Unidad Acad Matemat, Zacatecas, Zacatecas, Mexico
[4] Univ Autonoma San Luis Potosi, Inst Fis, San Luis Potosi, San Luis Potosi, Mexico
来源
DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE | 2020年 / 22卷 / 01期
基金
芬兰科学院;
关键词
chromatic number; double chain; edge disjointness graph; TRIANGULATIONS; BOUNDS;
D O I
10.23638/DMTCS-22-1-11
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let P be a set of n >= 4 points in general position in the plane. Consider all the closed straight line segments with both endpoints in P. Suppose that these segments are colored with the rule that disjoint segments receive different colors. In this paper we show that if P is the point configuration known as the double chain, with k points in the upper convex chain and l >= k points in the lower convex chain, then k + l - left perpendicular root 2l + 1/4 - 1/2 right perpendicular colors are needed and that this number is sufficient.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] On the chromatic number of disjointness graphs of curves
    Pach, Janos
    Tomon, Istvan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 144 : 167 - 190
  • [2] The maximum chromatic number of the disjointness graph of segments on n-point sets in the plane with n ≤ 16
    Garcia-Davila, Jesus J.
    Leanos, Jesus
    Lomeli-Haro, Mario
    Rios-Castro, Luis M.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (03):
  • [3] On the fractional chromatic number, the chromatic number, and graph products
    Klavzar, S
    Yeh, HG
    DISCRETE MATHEMATICS, 2002, 247 (1-3) : 235 - 242
  • [4] An approximate chromatic number of a graph
    Marcu, Danut
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2008, 11 (04): : 461 - 464
  • [5] Rank and chromatic number of a graph
    Kotlov, A
    JOURNAL OF GRAPH THEORY, 1997, 26 (01) : 1 - 8
  • [6] Spectral Inequalities on Independence Number, Chromatic Number, and Total Chromatic Number of a Graph
    Li, Rao
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (1-2): : 41 - 46
  • [7] TOTAL DOMINATOR CHROMATIC NUMBER OF A GRAPH
    Kazemi, Adel P.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (02) : 57 - 68
  • [8] Eigenvalues and chromatic number of a signed graph
    Wang, Wei
    Yan, Zhidan
    Qian, Jianguo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 619 : 137 - 145
  • [9] Fuzzy chromatic number of a wheel graph
    Glanta, Jasin P. J.
    Sobha, K. R.
    INTERNATIONAL CONFERENCE ON COMPUTER VISION AND MACHINE LEARNING, 2019, 1228
  • [10] Improved bounds for the chromatic number of a graph
    Hakimi, SL
    Schmeichel, E
    JOURNAL OF GRAPH THEORY, 2004, 47 (03) : 217 - 225