Renormalization factor and effective mass of the two-dimensional electron gas

被引:40
|
作者
Holzmann, Markus [1 ,2 ]
Bernu, Bernard [1 ]
Olevano, Valerio [3 ]
Martin, Richard M. [4 ,5 ]
Ceperley, David M. [5 ]
机构
[1] Univ Paris 06, CNRS, LPTMC, UMR 7600, F-75252 Paris, France
[2] CNRS UJF, LPMMC, UMR 7644, F-38042 Grenoble, France
[3] CNRS UJF, Inst Neel, F-38042 Grenoble, France
[4] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[5] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 04期
关键词
effective mass; Fermi liquid; Fermi surface; renormalisation; thermodynamics; two-dimensional electron gas; MONTE-CARLO;
D O I
10.1103/PhysRevB.79.041308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We calculate the momentum distribution of the Fermi-liquid phase of the homogeneous two-dimensional electron gas. We show that close to the Fermi surface, the momentum distribution of a finite system with N electrons approaches its thermodynamic limit slowly, with leading-order corrections scaling as N(-1/4). These corrections dominate the extrapolation of the renormalization factor Z and the single-particle effective mass m(*) to the infinite system size. We show how convergence can be improved using analytical corrections. In the range 1 <= r(s)<= 10, we get a lower renormalization factor Z and a higher effective mass m(*)>m compared to the perturbative random-phase approximation values.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Quantum Monte Carlo calculation of the energy band and quasiparticle effective mass of the two-dimensional Fermi fluid
    Drummond, N. D.
    Needs, R. J.
    PHYSICAL REVIEW B, 2009, 80 (24):
  • [32] Schottky Diodes on Heterostructures with Two-Dimensional Electron Gas
    Yushchenko, A. Yu.
    Ayzenshtat, G. I.
    Fedotova, F. I.
    RUSSIAN PHYSICS JOURNAL, 2019, 61 (12) : 2159 - 2166
  • [33] Functional-renormalization-group aided density functional analysis for the correlation energy of the two-dimensional homogeneous electron gas
    Yokota, Takeru
    Naito, Tomoya
    PHYSICAL REVIEW B, 2019, 99 (11)
  • [34] Hot-electron microwave noise in a two-dimensional electron gas
    Matulionis, A
    Liberis, J
    ULTRAFAST PHENOMENA IN SEMICONDUCTORS 2001, 2002, 384-3 : 97 - 105
  • [35] Imaging coherent electron wave flow in a two-dimensional electron gas
    LeRoy, BJ
    Bleszynski, AC
    Topinka, MA
    Westervelt, RM
    Shaw, SEJ
    Heller, EJ
    Maranowski, KD
    Gossard, AC
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 18 (1-3) : 163 - 164
  • [36] Effective mass of dilute two-dimensional holes in a GaAs heterostructure
    Noh, H
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 47 (02) : 272 - 276
  • [37] Two-dimensional Schrodinger Hamiltonians with effective mass in SUSY approach
    Cannata, F.
    Ioffe, M. V.
    Nishnianidze, D. N.
    ANNALS OF PHYSICS, 2008, 323 (10) : 2624 - 2632
  • [38] Lateral modulation doping of two-dimensional electron or hole gas
    Dmitriev, A.
    Shur, M.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (02): : 318 - 323
  • [39] Microwave response in two-dimensional electron gas in rolled nanomembranes
    Sultanov, D. B.
    Vorob'ev, A. B.
    Buldygin, A. F.
    Toropov, A. I.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (08)
  • [40] Two-dimensional electron gas in a non-Euclidean space
    Costa Filho, Raimundo N.
    Oliveira, S. F. S.
    Aguiar, V
    da Costa, D. R.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 129