A hyperfinite inequality for free entropy dimension

被引:9
作者
Jung, K [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
D O I
10.1090/S0002-9939-06-08237-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If X, Y, and Z are finite sets of selfadjoint elements in a tracial von Neumann algebra and X generates a hyperfinite von Neumann algebra, then delta(0)( X boolean OR Y boolean OR Z) <= delta(0)( X boolean OR Y) + delta(0)( X boolean OR Z) - delta(0)( X).
引用
收藏
页码:2099 / 2108
页数:10
相关论文
共 11 条
[1]   A property of free entropy [J].
Belinschi, ST ;
Bercovici, H .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 211 (01) :35-40
[2]  
CONNES A, 2003, L2 HOMOLOGY VONNEUMA
[3]  
Gaboriau D, 2000, INVENT MATH, V139, P41, DOI 10.1007/s002229900019
[4]   On free entropy dimension of finite von Neumann algebras [J].
Ge, LM ;
Shen, JH .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) :546-566
[5]   The free entropy dimension of hyperfinite von Neumann algebras [J].
Jung, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (12) :5053-5089
[6]   A free entropy dimension lemma [J].
Jung, K .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 211 (02) :265-271
[7]  
SZAREK S, 1997, BANACH CTR PUBLICATI, V43, P395
[8]   The analogues of entropy and of Fisher's information measure in free probability theory .3. The absence of Cartan subalgebras [J].
Voiculescu, D .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (01) :172-199
[9]   THE ANALOGS OF ENTROPY AND OF FISHER INFORMATION MEASURE IN FREE PROBABILITY-THEORY .2. [J].
VOICULESCU, D .
INVENTIONES MATHEMATICAE, 1994, 118 (03) :411-440
[10]   Free entropy [J].
Voiculescu, D .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 :257-278