Anomalous Stokes Shift of Colloidal Quantum Dots

被引:0
|
作者
Pelayo-Ceja, J. E. [1 ,2 ]
Zazueta-Raynaud, A. [1 ,3 ]
Lopez-Delgado, R. [1 ,3 ]
Saucedo-Flores, E. [2 ]
Ruelas-Lepe, R. [2 ]
Orona-Magallanes, F. [1 ,2 ]
Guerrero-Gonzalez, R. [1 ,2 ]
Ayon, A. [1 ]
机构
[1] Univ Texas San Antonio, Dept Phys & Astron, MEMS Res Lab, One UTSA Circle, San Antonio, TX 78249 USA
[2] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Blvd Gral Marcelino Garcia Barragan 1421, Guadalajara 44430, Jalisco, Mexico
[3] Univ Sonora, Dept Fis, Col Ctr, Blvd Luis Encinas & Rosales, Hermosillo 83000, Sonora, Mexico
来源
2018 SYMPOSIUM ON DESIGN, TEST, INTEGRATION & PACKAGING OF MEMS AND MOEMS (DTIP) | 2018年
关键词
Quantum dots; Stokes shift; photoluminescence; solar cells; PHOTOLUMINESCENCE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report an anomalous Stokes shift effect (SSE) observed in colloidal solutions containing down-shifting Carbon quantum dots (CQDs) of different sizes that is expected to have a positive influence on the power conversion efficiency of photovoltaic structures. Specifically, with an excitation wavelength of 390 nm, individual colloidal solutions of CQDs whose diameter was determined by the applied current during synthesis, exhibited photoluminescent (PL) emission wavelength peaks centered at 420 nm. However, the colloidal solution comprising the mixture of all the previously synthesized CQDs of different diameters was observed to have an anomalous PL Stokes shift centered at 515 nm Furthermore, the aforementioned anomalous SSE was also observed in CdTe QDs when added to the CQD mixed-solution (CMS). Thus, whereas a mixture of CdTe QDs of different sizes, exhibited a down-shifted photoluminescence centered at 555 nm, the peak was observed to have an anomalous Stokes shift centered at 580 nm when combined with the CMS. Quantum dot characterization included crystal structure analysis as well as photon absorption and photoluminescence wavelengths.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Anomalous Stokes shift of colloidal quantum dots and their influence on solar cell performance
    Pelayo-Ceja, J. E.
    Zazueta-Raynaud, A.
    Lopez-Delgado, R.
    Alvarez-Ramos, M. E.
    Saucedo-Flores, E.
    Ruelas-Lepe, R.
    Orona-Magallanes, F.
    Guerrero-Gonzalez, R.
    Ayon, A.
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2022, 28 (06): : 1505 - 1513
  • [2] On the quantitative absorption and Stokes shift in PbSe quantum dots embedded in glasses
    Ma, De-Wei
    Jiang, Hui-Lv
    Cheng, Cheng
    APPLIED PHYSICS B-LASERS AND OPTICS, 2015, 118 (01): : 85 - 92
  • [3] Colloidal Quantum Dots: 6. Nanoclusters of Colloidal Quantum Dots
    Razumov, V. F.
    Brichkin, S. B.
    Tovstun, S. A.
    HIGH ENERGY CHEMISTRY, 2024, 58 (SUPPL 1) : S81 - S104
  • [4] Electroluminescence of colloidal ZnSe quantum dots
    Dey, S. C.
    Nath, S. S.
    JOURNAL OF LUMINESCENCE, 2011, 131 (12) : 2707 - 2710
  • [5] Trion Decay in Colloidal Quantum Dots
    Jha, Praket P.
    Guyot-Sionnest, Philippe
    ACS NANO, 2009, 3 (04) : 1011 - 1015
  • [6] Determination of quantum size effect of colloidal SiC quantum dots by cyclic voltammetry
    Olaoye, Abdulmutolib O.
    Sani, Muhammad
    Ooi, Mahayatun D. J.
    Hussin, Mohd Hazwan
    Pakhuruddin, Mohd Zamir
    Hashim, Md. Roslan
    Rashid, Marzaini
    EMERGENT MATERIALS, 2024, 7 (04) : 1417 - 1428
  • [7] Origins of the Stokes Shift in PbS Quantum Dots: Impact of Polydispersity, Ligands, and Defects
    Liu, Yun
    Kim, Donghun
    Morris, Owen P.
    Zhitomirsky, David
    Grossman, Jeffrey C.
    ACS NANO, 2018, 12 (03) : 2838 - 2845
  • [8] Quantum Dots in Glasses: Size-Dependent Stokes Shift by Lead Chalcogenide
    Han, Na
    Liu, Chao
    Zhao, Zhiyong
    Zhang, Jihong
    Xie, Jun
    Han, Jianjun
    Zhao, Xiujian
    Jiang, Yang
    INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2015, 6 (04) : 339 - 344
  • [9] Colloidal Quantum Dots: 5. Luminescence Features of Colloidal Quantum Dots
    Brichkin, S. B.
    Spirin, M. G.
    Tovstun, S. A.
    Razumov, V. F.
    HIGH ENERGY CHEMISTRY, 2024, 58 (SUPPL 1) : S54 - S80
  • [10] Colloidal Aziridinium Lead Bromide Quantum Dots
    Bodnarchuk, Maryna I.
    Feld, Leon G.
    Zhu, Chenglian
    Boehme, Simon C.
    Bertolotti, Federica
    Avaro, Jonathan
    Aebli, Marcel
    Mir, Showkat Hassan
    Masciocchi, Norberto
    Erni, Rolf
    Chakraborty, Sudip
    Guagliardi, Antonietta
    Raino, Gabriele
    Kovalenko, Maksym V.
    ACS NANO, 2024, 18 (07) : 5684 - 5697