SAPPHIRE: a neural network based classifier for σ70 promoter prediction in Pseudomonas

被引:49
作者
Coppens, Lucas [1 ]
Lavigne, Rob [1 ]
机构
[1] Katholieke Univ Leuven, Lab Gene Technol, Dept Biosyst, Kasteelpk Arenberg 21,Box 2462, B-3001 Leuven, Belgium
基金
欧洲研究理事会;
关键词
PUTIDA;
D O I
10.1186/s12859-020-03730-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: In silico promoter prediction represents an important challenge in bioinformatics as it provides a first-line approach to identifying regulatory elements to support wet-lab experiments. Historically, available promoter prediction software have focused on sigma factor-associated promoters in the model organismE. coli.As a consequence, traditional promoter predictors yield suboptimal predictions when applied to other prokaryotic genera, such asPseudomonas,a Gram-negative bacterium of crucial medical and biotechnological importance. Results: We developedSAPPHIRE,a promoter predictor for sigma 70 promoters inPseudomonas.This promoter prediction relies on an artificial neural network that evaluates sequences on their similarity to the - 35 and - 10 boxes of sigma 70 promoters found experimentally inP. aeruginosa and P. utida. SAPPHIRE currently outperforms established predictive software when classifyingPseudomonas sigma 70 promoters and was built to allow further expansion in the future. Conclusions: SAPPHIREis the first predictive tool for bacterial sigma 70 promoters inPseudomonas. SAPPHIRE is free, publicly available and can be accessed online at. Alternatively, users can download the tool as a Python 3 script for local application from this site.
引用
收藏
页数:7
相关论文
共 16 条
[1]  
Bailey T L, 1994, Proc Int Conf Intell Syst Mol Biol, V2, P28
[2]  
Blasdel BG., 2018, COMP TRANSCRIPTOMICS, DOI [10.1101/248849, DOI 10.1101/248849]
[3]  
Domínguez-Cuevas P, 2004, PSEUDOMONAS, VOL 2: VIRULENCE AND GENE REGULATION, P319
[4]   A Multifaceted Study of Pseudomonas aeruginosa Shutdown by Virulent Podovirus LUZ19 [J].
Lavigne, Rob ;
Lecoutere, Elke ;
Wagemans, Jeroen ;
Cenens, William ;
Aertsen, Abram ;
Schoofs, Liliane ;
Landuyt, Bart ;
Paeshuyse, Jan ;
Scheer, Maurice ;
Schobert, Max ;
Ceyssens, Pieter-Jan .
MBIO, 2013, 4 (02)
[5]   Pseudomonas putida-a versatile host for the production of natural products [J].
Loeschcke, Anita ;
Thies, Stephan .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (15) :6197-6214
[6]   From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions [J].
Nike, Pablo I. ;
Chavarria, Max ;
Danchin, Antoine ;
de Lorenzo, Victor .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2016, 34 :20-29
[7]   DeePromoter: Robust Promoter Predictor Using Deep Learning [J].
Oubounyt, Mhaned ;
Louadi, Zakaria ;
Tayara, Hilal ;
Chong, Kil To .
FRONTIERS IN GENETICS, 2019, 10
[8]   Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies [J].
Pang, Zheng ;
Raudonis, Renee ;
Glick, Bernard R. ;
Lin, Tong-Jun ;
Cheng, Zhenyu .
BIOTECHNOLOGY ADVANCES, 2019, 37 (01) :177-192
[9]  
Rangannan V, 2009, MOL BIOSYST, V5, P1758, DOI [10.1039/B906535K, 10.1039/b906535k]
[10]   Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome [J].
Reese, MG .
COMPUTERS & CHEMISTRY, 2001, 26 (01) :51-56