Unsupervised pixel-level video foreground object segmentation via shortest path algorithm

被引:16
作者
Cao, Xiaochun [1 ]
Wang, Feng [2 ]
Zhang, Bao [3 ]
Fu, Huazhu [4 ]
Li, Chao [5 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
[2] Tianjin Univ, Sch Comp Software, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
[5] Beihang Univ Shenzhen, Res Inst, Shenzhen Key Lab Data Vitalizat, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Video object segmentation; Shortest path solution;
D O I
10.1016/j.neucom.2014.12.105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised video object segmentation is to automatically segment the foreground object in the video without any prior knowledge. In this paper, we propose an object-level method to extract the foreground object in the video. We firstly generate all the object-like regions as the segmentation candidates. Then based on the corresponding map between the successive frames, the video segmentation problem is converted to corresponding graph model, which selects the most corresponding object region from each frame. The shortest path algorithm is explored to get a global optimum solution for this graph. To obtain a better result, we also introduce a global foreground model to restrict the selected candidates. Finally, we utilize the selected candidates to obtain a more precise pixel-level foreground object segmentation. Compared with the state-of-the-art object-level methods, our method does not only guarantee the continuity of segmentation result, but also works well even under the cases of fast motion and occlusion. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 243
页数:9
相关论文
共 33 条
[1]  
Alexe B, 2010, PROC CVPR IEEE, P73, DOI 10.1109/CVPR.2010.5540226
[2]  
[Anonymous], 2015, CVPR
[3]  
[Anonymous], 2009, Ph.D. dissertation
[4]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[5]  
Boykov YY, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL I, PROCEEDINGS, P105, DOI 10.1109/ICCV.2001.937505
[6]   Video Object Segmentation by Tracking Regions [J].
Brendel, William ;
Todorovic, Sinisa .
2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, :833-840
[7]  
Brox T, 2010, LECT NOTES COMPUT SC, V6315, P282, DOI 10.1007/978-3-642-15555-0_21
[8]   Constrained Parametric Min-Cuts for Automatic Object Segmentation [J].
Carreira, Joao ;
Sminchisescu, Cristian .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :3241-3248
[9]   Adaptive Fragments-Based Tracking of Non-Rigid Objects Using Level Sets [J].
Chockalingam, Prakash ;
Pradeep, Nalin ;
Birchfield, Stan .
2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, :1530-1537
[10]  
Cui X., 2009, P 17 ACM INT C MULT, P617, DOI DOI 10.1145/1631272.1631370