STABILITY OF RADIAL SOLUTIONS OF THE POISSON NERNST PLANCK SYSTEM IN ANNULAR DOMAINS

被引:3
作者
Hsieh, Chia-Yu [1 ]
机构
[1] Natl Taiwan Univ, Natl Ctr Theoret Sci, Taipei 10617, Taiwan
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2019年 / 24卷 / 06期
关键词
Poisson-Nernst-Planck system; charge conserving Poisson-Boltzmann equation; variable dielectric; boundary layer solution; stability; exponential decay estimate; QUALITATIVE PROPERTIES; ASYMPTOTIC ANALYSIS; CARRIER TRANSPORT; BASIC EQUATIONS; TIME BEHAVIOR; MODEL; PERTURBATION; EXISTENCE; CHANNELS;
D O I
10.3934/dcdsb.2018269
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider radial solutions of the Poisson-Nernst-Planck (PNP) system with variable dielectric coefficients epsilon g(x) in N-dimensional annular domains, N >= 2. When the parameter epsilon tends to zero, the PNP system admits a boundary layer solution as a steady state, which satisfies the charge conserving Poisson-Boltzmann (CCPB) equation. For the stability of the radial boundary layer solutions to the time-dependent radial PNP system, we estimate the radial solution of the perturbed problem with global electroneutrality. We generalize the argument of the one spatial dimension case (cf. [18]) and find a new way to transform the perturbed problem. By choosing a suitable weighted norm, we then derive the associated energy law which can be used to prove that the H-x(-1) norm of the solution of the perturbed problem decays exponentially in time with the exponent independent of epsilon if the coefficient of the Robin boundary condition of electrostatic potential has a suitable positive lower bound.
引用
收藏
页码:2657 / 2681
页数:25
相关论文
共 41 条
[1]   Asymptotic analysis of the Poisson-Boltzmann equation describing electrokinetics in porous media [J].
Allaire, Gregoire ;
Dufreche, Jean-Francois ;
Mikelic, Andro ;
Piatnitski, Andrey .
NONLINEARITY, 2013, 26 (03) :881-910
[2]   On large time asymptotics for drift-diffusion-Poisson systems [J].
Arnold, A ;
Markowich, P ;
Toscani, G .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5) :571-581
[3]   Micro total analysis systems. 2. Analytical standard operations and applications [J].
Auroux, PA ;
Iossifidis, D ;
Reyes, DR ;
Manz, A .
ANALYTICAL CHEMISTRY, 2002, 74 (12) :2637-2652
[4]   Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study [J].
Barcilon, V ;
Chen, DP ;
Eisenberg, RS ;
Jerome, JW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (03) :631-648
[5]   Current-voltage relations for electrochemical thin films [J].
Bazant, MZ ;
Chu, KT ;
Bayly, BJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1463-1484
[6]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[7]   Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems [J].
Biler, P ;
Dolbeault, J .
ANNALES HENRI POINCARE, 2000, 1 (03) :461-472
[8]   GLOBAL WELL-POSEDNESS AND STABILITY OF ELECTROKINETIC FLOWS [J].
Bothe, Dieter ;
Fischer, Andre ;
Saal, Juergen .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) :1263-1316
[9]   Analysis of the Poisson-Nernst-Planck equation in a ball for modeling the Voltage-Current relation in neurobiological microdomains [J].
Cartailler, J. ;
Schuss, Z. ;
Holcman, D. .
PHYSICA D-NONLINEAR PHENOMENA, 2017, 339 :39-48
[10]   Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel [J].
Chen, D ;
Lear, J ;
Eisenberg, B .
BIOPHYSICAL JOURNAL, 1997, 72 (01) :97-116