Facile Aerosol Route to Hollow CuO Spheres and its Superior Performance as an Oxidizer in Nanoenergetic Gas Generators

被引:87
作者
Jian, Guoqiang [1 ]
Liu, Lu [1 ]
Zachariah, Michael R. [1 ,2 ]
机构
[1] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
关键词
spray pyrolysis; metal oxides; hollow materials; metastable intermolecular composites; nanothermites; METAL-OXIDES; NANOSTRUCTURES; NANOPARTICLES; OXIDATION; NANOALUMINUM; ALUMINUM; RELEASE;
D O I
10.1002/adfm.201202100
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermochemical metal/metal oxide redox reactions have twice the energy density of 2,4,6-trinitrotoluene (TNT). They suffer, however, from low pressure-volume work due to low gas expansion from the reaction. This study focuses on the development of a nanocomposite that delivers a high energy density and the potential of rapid gas release. Hollow CuO spheres with nanosized building blocks are fabricated using a droplet-to-particle aerosol spray pyrolysis method with the introduction of gas-blowing agents in the synthesis procedure. Nanoaluminum with hollow CuO as an oxidizer ignites in a very violent manner and exhibits excellent gas-generation behavior, demonstrating a high pressurization rate of 0.745 MPa s1 and a transient peak pressure of 0.896 MPa with a charge density of 1 mg cm3, as well as a rapid oxygen release. Compared with wet-chemistry methods, gas-phase processes are relatively low cost, nominally offer a higher purity product, and are usually configured as continuous production processes, with a limited number of steps. The synthesis strategy demonstrated is simple and should be extendable to the preparation of other hollow metal oxide structures.
引用
收藏
页码:1341 / 1346
页数:6
相关论文
共 32 条
[1]   OXIDATION BEHAVIOR OF ALUMINUM NANOPOWDERS [J].
AUMANN, CE ;
SKOFRONICK, GL ;
MARTIN, JA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (03) :1178-1183
[2]   Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials [J].
Boissiere, Cedric ;
Grosso, David ;
Chaumonnot, Alexandra ;
Nicole, Lionel ;
Sanchez, Clement .
ADVANCED MATERIALS, 2011, 23 (05) :599-623
[3]   Metal-based reactive nanomaterials [J].
Dreizin, Edward L. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2009, 35 (02) :141-167
[4]   Fabrication and application of inorganic hollow spheres [J].
Hu, Jing ;
Chen, Min ;
Fang, Xiaosheng ;
Wu, Limin .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (11) :5472-5491
[5]  
Jian G. Q., 2011, FALL M E STAT SECT C
[6]   Enhancing the rate of energy release from nanoenergetic materials by electrostatically enhanced assembly [J].
Kim, SH ;
Zachariah, MR .
ADVANCED MATERIALS, 2004, 16 (20) :1821-+
[7]   Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - A review [J].
Kruis, FE ;
Fissan, H ;
Peled, A .
JOURNAL OF AEROSOL SCIENCE, 1998, 29 (5-6) :511-535
[8]   Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems [J].
Lai, Xiaoyong ;
Halpert, Jonathan E. ;
Wang, Dan .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5604-5618
[9]   Gas sensors using hierarchical and hollow oxide nanostructures: Overview [J].
Lee, Jong-Heun .
SENSORS AND ACTUATORS B-CHEMICAL, 2009, 140 (01) :319-336
[10]   Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries [J].
Liu, Jian ;
Qiao, Shi Zhang ;
Chen, Jun Song ;
Lou, Xiong Wen ;
Xing, Xianran ;
Lu, Gao Qing .
CHEMICAL COMMUNICATIONS, 2011, 47 (47) :12578-12591