High Throughput AOTF Hyperspectral Imager for Randomly Polarized Light

被引:29
作者
Abdlaty, Ramy [1 ,4 ]
Orepoulos, John [2 ]
Sinclair, Peter [2 ]
Berman, Richard [2 ]
Fang, Qiyin [1 ,3 ]
机构
[1] McMaster Univ, Sch Biomed Engn, Hamilton, ON L8S 4K1, Canada
[2] Spectral Appl Res Inc, Richmond Hill, ON L4B 2N3, Canada
[3] McMaster Univ, Dept Engn Phys, Hamilton, ON L8S 4K1, Canada
[4] Mil Tech Coll, Dept Biomed Engn, Cairo, Egypt
基金
加拿大自然科学与工程研究理事会;
关键词
hyperspectral imaging; AOTF; LCTF; optical throughput; TUNABLE FILTERS; FOOD QUALITY; SECURITY;
D O I
10.3390/photonics5010003
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The acousto-optic tunable filter (AOTF) is one of the most used techniques for hyperspectral imaging (HSI), and is capable of fast and random wavelength access, high diffraction efficiency, and good spectral resolution. Typical AOTF-HSI works with linearly polarized light; hence, its throughput is limited for randomly polarized applications such as fluorescence imaging. We report an AOTF-based imager design using both polarized components of the input light. The imager is designed to operate in the 450 to 800 nm region with resolutions in the range of 1.5-4 nm. The performance characterization results show that this design leads to 68% improvement in throughput for randomly polarized light. We also compared its performance against a liquid crystal tunable filter (LCTF)-based imager.
引用
收藏
页数:10
相关论文
共 32 条
[1]   The medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance [J].
Ballabriga, R. ;
Campbell, M. ;
Heijne, E. H. M. ;
Llopart, X. ;
Tlustos, L. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2007, 54 (05) :1824-1829
[2]   Multispectral imaging in the extended near-infrared window based on endogenous chromophores [J].
Cao, Qian ;
Zhegalova, Natalia G. ;
Wang, Steven T. ;
Akers, Walter J. ;
Berezin, Mikhail Y. .
JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (10)
[3]   A hyperspectral fluorescence lifetime probe for skin cancer diagnosis [J].
De Beule, P. A. A. ;
Dunsby, C. ;
Galletly, N. P. ;
Stamp, G. W. ;
Chu, A. C. ;
Anand, U. ;
Anand, P. ;
Benham, C. D. ;
Naylor, A. ;
French, P. M. W. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (12)
[4]   Hyperspectral imaging for non-contact analysis of forensic traces [J].
Edelman, G. J. ;
Gaston, E. ;
van Leeuwen, T. G. ;
Cullen, P. J. ;
Aalders, M. C. G. .
FORENSIC SCIENCE INTERNATIONAL, 2012, 223 (1-3) :28-39
[5]   Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy [J].
Gao, Liang ;
Kester, Robert T. ;
Tkaczyk, Tomasz S. .
OPTICS EXPRESS, 2009, 17 (15) :12293-12308
[6]   Imaging spectroscopy using tunable filters: A review [J].
Gat, N .
WAVELET APPLICATIONS VII, 2000, 4056 :50-64
[7]   ACOUSTOOPTIC IMAGING SPECTROPOLARIMETRY FOR REMOTE-SENSING [J].
GLENAR, DA ;
HILLMAN, JJ ;
SAIF, B ;
BERGSTRALH, J .
APPLIED OPTICS, 1994, 33 (31) :7412-7424
[8]   Three decades of hyperspectral remote sensing of the Earth: A personal view [J].
Goetz, Alexander F. H. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 :S5-S16
[9]   Hyperspectral imaging - an emerging process analytical tool for food quality and safety control [J].
Gowen, A. A. ;
O'Donnell, C. P. ;
Cullen, P. J. ;
Downey, G. ;
Frias, J. M. .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2007, 18 (12) :590-598
[10]   Review of snapshot spectral imaging technologies [J].
Hagen, Nathan ;
Kudenov, Michael W. .
OPTICAL ENGINEERING, 2013, 52 (09)