3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction

被引:24
作者
Brell, Maximilian [1 ]
Segl, Karl [1 ]
Guanter, Luis [1 ]
Bookhagen, Bodo [2 ]
机构
[1] Helmholtz Ctr Potsdam GFZ, German Res Ctr Geosci, Sect 1-4 Remote Sensing, D-14473 Potsdam, Germany
[2] Univ Potsdam, Inst Earth & Environm Sci, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
关键词
Lidar; Multispectral point cloud; Laser return intensity; Unmixing; Sharpening; Imaging spectroscopy; In-flight; Pixel level; Sensor fusion; Data fusion; Preprocessing; Point cloud segmentation; Semantic labeling; INCORPORATING SPATIAL INFORMATION; TREE SPECIES CLASSIFICATION; REMOTE-SENSING DATA; WAVE-FORM LIDAR; FOREST; SPECTROSCOPY; RESOLUTION; IMAGES; CALIBRATION; BIOMASS;
D O I
10.1016/j.isprsjprs.2019.01.022
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Remote Sensing technologies allow to map biophysical, biochemical, and earth surface parameters of the land surface. Of especial interest for various applications in environmental and urban sciences is the combination of spectral and 3D elevation information. However, those two data streams are provided separately by different instruments, namely airborne laser scanner (ALS) for elevation and a hyperspectral imager (HSI) for high spectral resolution data. The fusion of ALS and HSI data can thus lead to a single data entity consistently featuring rich structural and spectral information. In this study, we present the application of fusing the first pulse return information from ALS data at a sub-decimeter spatial resolution with the lower-spatial resolution hyperspectral information available from the HSI into a hyperspectral point cloud (HSPC). During the processing, a plausible hyperspectral spectrum is assigned to every first-return ALS point. We show that the complementary implementation of spectral and 3D information at the point-cloud scale improves object-based classification and information extraction schemes. This improvements have great potential for numerous land cover mapping and environmental applications.
引用
收藏
页码:200 / 214
页数:15
相关论文
共 57 条
  • [1] Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance
    Aasen, Helge
    Burkart, Andreas
    Bolten, Andreas
    Bareth, Georg
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 108 : 245 - 259
  • [2] Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry
    Alonzo, Michael
    Bookhagen, Bodo
    McFadden, Joseph P.
    Sun, Alex
    Roberts, Dar A.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 162 : 141 - 153
  • [3] Urban tree species mapping using hyperspectral and lidar data fusion
    Alonzo, Michael
    Bookhagen, Bodo
    Roberts, Dar A.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2014, 148 : 70 - 83
  • [4] Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest
    Anderson, Jeanne E.
    Plourde, Lucie C.
    Martin, Mary E.
    Braswell, Bobby H.
    Smith, Marie-Louise
    Dubayah, Ralph O.
    Hofton, Michelle A.
    Blair, J. Bryan
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) : 1856 - 1870
  • [5] [Anonymous], INF SCI
  • [6] [Anonymous], SPIE OPTICAL ENG APP
  • [7] [Anonymous], 2003, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • [8] FOREST CONSERVATION Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation
    Asner, G. P.
    Martin, R. E.
    Knapp, D. E.
    Tupayachi, R.
    Anderson, C. B.
    Sinca, F.
    Vaughn, N. R.
    Llactayo, W.
    [J]. SCIENCE, 2017, 355 (6323) : 385 - 388
  • [9] Carnegie Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging (wLiDAR) for three-dimensional studies of ecosystems
    Asner, Gregory P.
    Knapp, David E.
    Kennedy-Bowdoin, Ty
    Jones, Matthew O.
    Martin, Roberta E.
    Boardman, Joseph
    Field, Christopher B.
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2007, 1 (01):
  • [10] Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Dobigeon, Nicolas
    Parente, Mario
    Du, Qian
    Gader, Paul
    Chanussot, Jocelyn
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) : 354 - 379