Power ramp rate capabilities of a 5 kW proton exchange membrane fuel cell system with discrete ejector control

被引:45
作者
Nikiforow, K. [1 ]
Pennanen, J. [1 ]
Ihonen, J. [1 ]
Uski, S. [1 ]
Koski, P. [1 ]
机构
[1] VTT Tech Res Ctr Finland Ltd, POB 1000, FI-02044 Espoo, Finland
基金
芬兰科学院;
关键词
PEMFC system; Power ramp rate; Dynamic behavior; Ejector; Fuel supply; Air supply; FLOW;
D O I
10.1016/j.jpowsour.2018.01.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The power ramp rate capabilities of a 5 kW proton exchange membrane fuel cell (PEMFC) system are studied theoretically and experimentally for grid support service applications. The fuel supply is implemented with a fixed-geometry ejector and a discrete control solution without any anode-side pressure fluctuation suppression methods. We show that the stack power can be ramped up from 2.0 kW to 4.0 kW with adequate fuel supply and low anode pressure fluctuations within only 0.1 s. The air supply is implemented with a centrifugal blower. Air supply ramp rates are studied with a power increase executed within 1 and 0.2 s after the request, the time dictated by grid support service requirements in Finland and the UK. We show that a power ramp-up from 2.0 kW to 3.7 kW is achieved within 1 s with an initial air stoichiometry of 2.5 and within 0.2 s with an initial air stoichiometry of 7.0. We also show that the timing of the power ramp-up affects the achieved ancillary power capacity. This work demonstrates that hydrogen fueled and ejector-based PEMFC systems can provide a significant amount of power in less than 1 s and provide valuable ancillary power capacity for grid support services.
引用
收藏
页码:30 / 37
页数:8
相关论文
共 23 条
[1]  
AEMC, 2017, SYST SEC MARK FRAM R
[2]   Two-phase flow and thermal transients in proton exchange membrane fuel cells - A critical review [J].
Banerjee, Rupak ;
Kandlikar, Satish G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (10) :3990-4010
[3]   Scientific aspects of polymer electrolyte fuel cell durability and degradation [J].
Borup, Rod ;
Meyers, Jeremy ;
Pivovar, Bryan ;
Kim, Yu Seung ;
Mukundan, Rangachary ;
Garland, Nancy ;
Myers, Deborah ;
Wilson, Mahlon ;
Garzon, Fernando ;
Wood, David ;
Zelenay, Piotr ;
More, Karren ;
Stroh, Ken ;
Zawodzinski, Tom ;
Boncella, James ;
McGrath, James E. ;
Inaba, Minoru ;
Miyatake, Kenji ;
Hori, Michio ;
Ota, Kenichiro ;
Ogumi, Zempachi ;
Miyata, Seizo ;
Nishikata, Atsushi ;
Siroma, Zyun ;
Uchimoto, Yoshiharu ;
Yasuda, Kazuaki ;
Kimijima, Ken-ichi ;
Iwashita, Norio .
CHEMICAL REVIEWS, 2007, 107 (10) :3904-3951
[4]   Experimental analysis of a 20 kWe PEM fuel cell system in dynamic conditions representative of automotive applications [J].
Corbo, P. ;
Migliardini, F. ;
Veneri, O. .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (10) :2688-2697
[5]   Dynamic behaviour of hydrogen fuel cells for automotive application [J].
Corbo, P. ;
Migliardini, F. ;
Veneri, O. .
RENEWABLE ENERGY, 2009, 34 (08) :1955-1961
[6]   Model-based control of cathode pressure and oxygen excess ratio of a PEM fuel cell system [J].
Danzer, Michael A. ;
Wilhelm, Joerg ;
Aschemann, Harald ;
Hofer, Eberhard P. .
JOURNAL OF POWER SOURCES, 2008, 176 (02) :515-522
[7]   Impact of flow rates and electrode specifications on degradations during repeated startups and shutdowns in polymer-electrolyte membrane fuel cells [J].
Dillet, J. ;
Spernjak, D. ;
Lamibrac, A. ;
Maranzana, G. ;
Mukundan, R. ;
Fairweather, J. ;
Didierjean, S. ;
Borup, R. L. ;
Lottin, O. .
JOURNAL OF POWER SOURCES, 2014, 250 :68-79
[8]  
ENTSO-E, 2017, Tech-rep.
[9]  
ENTSO-E, 2016, NORD BAL PHIL
[10]   Investigation of degradation effects in polymer electrolyte fuel cells under automotive-related operating conditions [J].
Enz, S. ;
Dao, T. A. ;
Messerschmidt, M. ;
Scholta, J. .
JOURNAL OF POWER SOURCES, 2015, 274 :521-535