RTD-based cellular neural networks with multiple steady states

被引:27
作者
Itoh, M [1 ]
Julián, P
Chua, LO
机构
[1] Fukuoka Inst Technol, Dept Informat & Commun Engn, Fukuoka 8110295, Japan
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2001年 / 11卷 / 12期
关键词
D O I
10.1142/S0218127401004133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the relationship between the standard cellular neural network (CNN) and the resonant tunneling diode (RTD)-based CNN. We investigate the functional and advanced capabilities of a new generation of CNNs that exploit the multiplicity of steady states. We also include in the analysis higher order CNNs. Furthermore, some methods for designing RTD-based CNNs with multiple steady states are presented.
引用
收藏
页码:2913 / 2959
页数:47
相关论文
共 8 条
[1]   CNN: A vision of complexity [J].
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (10) :2219-2425
[2]  
DOGARU R, 1999, M9972 UCBERL
[3]   Simulation and visualization of CNN dynamics [J].
Hänggi, M ;
Moser, S ;
Pfaffhauser, E ;
Moschytz, GS .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1237-1261
[4]  
HANGGI M, 2000, M0051 UCBERL
[5]  
Kanagawa A, 1996, IEICE T FUND ELECTR, VE79A, P1658
[6]   CELLULAR NEURAL NETWORKS FOR ASSOCIATIVE MEMORIES [J].
LIU, DR ;
MICHEL, AN .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (02) :119-121
[7]  
PECORA LM, 1990, PHYS REV LETT, V64, P8
[8]  
TANG H, 1996, P 26 INT S MULT VAL, P230