Time averaged distribution of a discrete-time quantum walk on the path

被引:11
作者
Ide, Yusuke [1 ]
Konno, Norio [2 ]
Segawa, Etsuo [3 ]
机构
[1] Kanagawa Univ, Fac Engn, Dept Informat Syst Creat, Yokohama, Kanagawa 2218686, Japan
[2] Yokohama Natl Univ, Fac Engn, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
[3] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
Quantum walk; Path; Jacobi matrix;
D O I
10.1007/s11128-012-0424-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The discrete time quantum walk which is a quantum counterpart of random walk plays important roles in the theory of quantum information theory. In the present paper, we focus on discrete time quantum walks viewed as quantization of random walks on the path. We obtain a weak limit theorem for the time averaged distribution of our quantum walks.
引用
收藏
页码:1207 / 1218
页数:12
相关论文
共 20 条
[1]  
Aharonov D., 2001, P 33 ANN ACM S THEOR, DOI [10.1145/380752.380758, DOI 10.1145/380752.380758]
[2]   Asymptotic evolution of quantum walks with random coin [J].
Ahlbrecht, A. ;
Vogts, H. ;
Werner, A. H. ;
Werner, R. F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
[3]   Quantum walk algorithm for element distinctness [J].
Ambainis, A .
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, :22-31
[4]  
Ambainis A., 2001, P 33 ANN ACM S THEOR, P37, DOI 10.1145/380752.380757.
[5]  
[Anonymous], 2011, Graph spectra for complex networks
[6]  
Childs A.M., 2003, P 35 ANN ACM S THEOR, P59, DOI [DOI 10.1145/780542.780552, 10.1145/780542.780552]
[7]  
Chisaki K, 2011, QUANTUM INF COMPUT, V12, P0314
[8]  
Chisaki K, 2012, QUANTUM INF COMPUT, V11, P0741
[9]  
Godsil C, 2011, ARXIV11032578
[10]  
Hora A., 2007, Quantum Probability and Spectral Analysis of Graphs