Potential of Potassium Hydroxide Pretreatment of Switchgrass for Fermentable Sugar Production

被引:62
|
作者
Sharma, Rajat [1 ]
Palled, Vijaykumar [2 ]
Sharma-Shivappa, Ratna R. [1 ,4 ]
Osborne, Jason [3 ]
机构
[1] N Carolina State Univ NCSU, Dept Biol & Agr Engn, Raleigh, NC 27695 USA
[2] Univ Agr Sci, Coll Agr Engn, Raichur, Karnataka, India
[3] NCSU, Dept Stat, Raleigh, NC 27695 USA
[4] N Carolina State Univ, Raleigh, NC 27695 USA
关键词
Switchgrass; Lignocelluloses; KOH; Enzymatic hydrolysis; AIL; Fermentable sugars; ENZYMATIC-HYDROLYSIS; LIME PRETREATMENT; ETHANOL; BIOETHANOL;
D O I
10.1007/s12010-012-0009-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chemical pretreatment of lignocellulosic biomass has been extensively investigated for sugar generation and subsequent fuel production. Alkaline pretreatment has emerged as one of the popular chemical pretreatment methods, but most attempts thus far have utilized NaOH for the pretreatment process. This study aimed at investigating the potential of potassium hydroxide (KOH) as a viable alternative alkaline reagent for lignocellulosic pretreatment based on its different reactivity patterns compared to NaOH. Performer switchgrass was pretreated at KOH concentrations of 0.5-2 % for varying treatment times of 6-48 h, 6-24 h, and 0.25-1 h at 21, 50, and 121 A degrees C, respectively. The pretreatments resulted in the highest percent sugar retention of 99.26 % at 0.5 %, 21 A degrees C, 12 h while delignification up to 55.4 % was observed with 2 % KOH, 121 A degrees C, 1 h. Six pretreatment conditions were selected for subsequent enzymatic hydrolysis with Cellic CTec2A (R) for sugar generation. The pretreatment condition of 0.5 % KOH, 24 h, 21 A degrees C was determined to be the most effective as it utilized the least amount of KOH while generating 582.4 mg sugar/g raw biomass for a corresponding percent carbohydrate conversion of 91.8 %.
引用
收藏
页码:761 / 772
页数:12
相关论文
共 50 条
  • [21] Fermentable sugar production from rapeseed straw by dilute phosphoric acid pretreatment
    Lopez-Linares, J. C.
    Cara, C.
    Moya, M.
    Ruiz, E.
    Castro, E.
    Romero, I.
    INDUSTRIAL CROPS AND PRODUCTS, 2013, 50 : 525 - 531
  • [22] Pretreatment of spent mushroom substrate for enhancing the conversion of fermentable sugar
    Wu, Songqing
    Lan, Yanjiao
    Wu, Zhimao
    Peng, Yan
    Chen, Siqi
    Huang, Zhipeng
    Xu, Lei
    Gelbic, Ivan
    Guan, Xiong
    Zhang, Lingling
    Zou, Shuangquan
    BIORESOURCE TECHNOLOGY, 2013, 148 : 596 - 600
  • [23] Pretreatment of Corn Stover for Methane Production with the Combination of Potassium Hydroxide and Calcium Hydroxide
    Li, Lin
    Chen, Chang
    Zhang, Ruihong
    He, Yanfeng
    Wang, Wen
    Liu, Guangqing
    ENERGY & FUELS, 2015, 29 (09) : 5841 - 5846
  • [24] Effect of Dilute Acid Pretreatment on the Sugarcane Leaf for Fermentable Sugars Production
    Martins, Julia Ribeiro
    Schmatz, Alison Andrei
    Salazar-Bryan, Ana Maria
    Brienzo, Michel
    SUGAR TECH, 2022, 24 (05) : 1540 - 1550
  • [25] Optimization of Potassium Hydroxide Combined Urea Pretreatment and Enzymatic Hydrolysis of Wheat Straw Using Response Surface Methodology for Improving Sugar Production
    Zhang, Hui
    Wu, Junhui
    BIORESOURCES, 2024, 19 (01): : 1079 - 1106
  • [26] Fractionation of Forest Residues of Douglas-fir for Fermentable Sugar Production by SPORL Pretreatment
    Zhang, Chao
    Zhu, J. Y.
    Gleisner, Roland
    Sessions, John
    BIOENERGY RESEARCH, 2012, 5 (04) : 978 - 988
  • [27] Pretreatment of Helianthus tuberosus residue by flow-through process for production of fermentable sugar
    Park, Yong Cheol
    Kim, Jun Seok
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2017, 34 (02) : 346 - 352
  • [28] Pretreatment of Corn Stover Silage with Fe(NO3)3 for Fermentable Sugar Production
    Sun, Youshan
    Lu, Xuebin
    Zhang, Rui
    Wang, Xinying
    Zhang, Shuting
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2011, 164 (06) : 918 - 928
  • [29] The production of fermentable sugar and bioethanol from acacia wood by optimizing dilute sulfuric acid pretreatment and post treatment
    Lee, Ilgyu
    Yu, Ju-Hyun
    FUEL, 2020, 275
  • [30] Integrated alkali pretreatment and preservation of wet lettuce (Pistia stratiotes) by lactic acid bacteria for fermentable sugar production
    Chen, Kuan-Yu
    Zheng, Yi
    Cheng, Yu-Shen
    BIOMASS & BIOENERGY, 2015, 81 : 249 - 255