Linear representations of probabilistic transformations induced by context transitions

被引:86
作者
Khrennikov, A [1 ]
机构
[1] Univ Vaxjo, MSI, Int Ctr Math Modelling Phys & Cognot Sci, S-35195 Vaxjo, Sweden
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 47期
关键词
D O I
10.1088/0305-4470/34/47/304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using straightforward frequency arguments we classify transformations of probabilities which can be generated by transition from one preparation procedure (context) to another. There are three classes of transformations corresponding to statistical deviations of different magnitudes: (a) trigonometric; (b) hyperbolic; (c) hyper-trigonometric. It is shown that not only quantum preparation procedures can have trigonometric probabilistic behaviour. We propose generalizations of C-linear space probabilistic calculus to describe non-quantum (trigonometric and hyperbolic) probabilistic transformations. We also analyse the superposition principle in this framework.
引用
收藏
页码:9965 / 9981
页数:17
相关论文
共 40 条
[1]  
ACCARDI L, 1984, PROBABILISTIC ROOTS, P297
[2]  
ACCARDI L, 1997, URNE CAMALEONI DIALO
[3]  
[Anonymous], 1989, QUANTUM MECH
[4]  
[Anonymous], SUPERANALYSIS
[5]   STATISTICAL INTERPRETATION OF QUANTUM MECHANICS [J].
BALLENTI.LE .
REVIEWS OF MODERN PHYSICS, 1970, 42 (04) :358-&
[6]  
BALLENTINE EL, 2001, INTERPRETATIONS PROB
[7]  
Beltrametti E. G., 1981, The Logic of Quantum Mechanics
[8]   Can quantum-mechanical description of physical reality be considered complete? [J].
Bohr, N .
PHYSICAL REVIEW, 1935, 48 (08) :696-702
[9]  
Busch P., 1995, OPERATIONAL QUANTUM, DOI DOI 10.1007/978-3-540-49239-9
[10]  
D'Espagnat B, 2003, VEILED REALITY ANAL