Efficient simulation of cardiac electrical propagation using high order finite elements

被引:23
作者
Arthurs, Christopher J. [1 ]
Bishop, Martin J. [1 ,2 ]
Kay, David [1 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[2] Kings Coll London, Dept Biomed Engn, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
Finite element method; p-Version; Monodomain simulation; Computational cardiology; Numerical efficiency; P-VERSION; BIDOMAIN; ELECTROPHYSIOLOGY; DEFIBRILLATION; TISSUE; ELECTROPORATION; REPOLARIZATION; MECHANISMS; MONODOMAIN; EXCITATION;
D O I
10.1016/j.jcp.2012.01.037
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an application of high order hierarchical finite elements for the efficient approximation of solutions to the cardiac monodomain problem. We detail the hurdles which must be overcome in order to achieve theoretically-optimal errors in the approximations generated, including the choice of method for approximating the solution to the cardiac cell model component. We place our work on a solid theoretical foundation and show that it can greatly improve the accuracy in the approximation which can be achieved in a given amount of processor time. Our results demonstrate superior accuracy over linear finite elements at a cheaper computational cost and thus indicate the potential indispensability of our approach for large-scale cardiac simulation. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3946 / 3962
页数:17
相关论文
共 55 条
[1]  
Ackleh AS., 2010, CLASSICAL MODERN NUM
[2]  
Adams R., 1985, Sobolev Spaces
[3]   The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs [J].
Ainsworth, M ;
Kay, D .
NUMERISCHE MATHEMATIK, 1999, 82 (03) :351-388
[4]   Approximation theory for the hp-version finite element method and application to the non-linear Laplacian [J].
Ainsworth, M ;
Kay, D .
APPLIED NUMERICAL MATHEMATICS, 2000, 34 (04) :329-344
[5]   Asymmetry in membrane responses to electric shocks: Insights from bidomain simulations [J].
Ashihara, T ;
Trayanova, NA .
BIOPHYSICAL JOURNAL, 2004, 87 (04) :2271-2282
[6]   THE P AND H-P VERSIONS OF THE FINITE-ELEMENT METHOD, BASIC PRINCIPLES AND PROPERTIES [J].
BABUSKA, I ;
SURI, M .
SIAM REVIEW, 1994, 36 (04) :578-632
[7]   THE P-VERSION AND H-P-VERSION OF THE FINITE-ELEMENT METHOD, AN OVERVIEW [J].
BABUSKA, I ;
SURI, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 80 (1-3) :5-26
[8]  
BABUSKA I, 1987, RAIRO-MATH MODEL NUM, V21, P199
[9]   THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SZABO, BA ;
KATZ, IN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :515-545
[10]  
Bartocci E., 2011, CMSB 2011 9 INT C CO