Sample size calculation in metabolic phenotyping studies

被引:40
作者
Billoir, Elise [1 ]
Navratil, Vincent [2 ]
Blaise, Benjamin J. [3 ]
机构
[1] Univ Lorraine, Biostat, Nancy, France
[2] Univ Lyon, Bioinformat & Syst Biol, Lyon, France
[3] Univ Lyon, Anaesthesiol & Intens Care Med, Lyon, France
关键词
sample size determination; chemometrics; metabolic phenotyping; FALSE DISCOVERY RATE; CAENORHABDITIS-ELEGANS; POWER;
D O I
10.1093/bib/bbu052
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The number of samples needed to identify significant effects is a key question in biomedical studies, with consequences on experimental designs, costs and potential discoveries. In metabolic phenotyping studies, sample size determination remains a complex step. This is due particularly to the multiple hypothesis-testing framework and the top-down hypothesis-free approach, with no a priori known metabolic target. Until now, there was no standard procedure available to address this purpose. In this review, we discuss sample size estimation procedures for metabolic phenotyping studies. We release an automated implementation of the Data-driven Sample size Determination (DSD) algorithm for MATLAB and GNU Octave. Original research concerning DSD was published elsewhere. DSD allows the determination of an optimized sample size in metabolic phenotyping studies. The procedure uses analytical data only from a small pilot cohort to generate an expanded data set. The statistical recoupling of variables procedure is used to identify metabolic variables, and their intensity distributions are estimated by Kernel smoothing or log-normal density fitting. Statistically significant metabolic variations are evaluated using the Benjamini-Yekutieli correction and processed for data sets of various sizes. Optimal sample size determination is achieved in a context of biomarker discovery (at least one statistically significant variation) or metabolic exploration (a maximum of statistically significant variations). DSD toolbox is encoded in MATLAB R2008A (Mathworks, Natick, MA) for Kernel and log-normal estimates, and in GNU Octave for log-normal estimates (Kernel density estimates are not robust enough in GNU octave). It is available at ext-link-type="uri" xlink:href="http://www.prabi.fr/redmine/projects/dsd/repository" xlink:type="simple">http://www.prabi.fr/redmine/projects/dsd/repository, with a tutorial at ext-link-type="uri" xlink:href="http://www.prabi.fr/redmine/projects/dsd/wiki" xlink:type="simple">http://www.prabi.fr/redmine/projects/dsd/wiki.
引用
收藏
页码:813 / 819
页数:7
相关论文
共 39 条
[1]   A Systematic Review of Power and Sample Size Reporting in Randomized Controlled Trials within Plastic Surgery [J].
Ayeni, Olubimpe ;
Dickson, Lisa ;
Ignacy, Teegan A. ;
Thoma, Achilleas .
PLASTIC AND RECONSTRUCTIVE SURGERY, 2012, 130 (01) :78E-86E
[2]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Metabotyping of Caenorhabditis elegans reveals latent phenotypes [J].
Blaise, Benjamin J. ;
Giacomotto, Jean ;
Elena, Benedicte ;
Dumas, Marc-Emmanuel ;
Toullhoat, Pierre ;
Segalat, Laurent ;
Emsley, Lyndon .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (50) :19808-19812
[5]   Data-Driven Sample Size Determination for Metabolic Phenotyping Studies [J].
Blaise, Benjamin J. .
ANALYTICAL CHEMISTRY, 2013, 85 (19) :8943-8950
[6]   Orthogonal Filtered Recoupled-STOCSY to Extract Metabolic Networks Associated with Minor Perturbations from NMR Spectroscopy [J].
Blaise, Benjamin J. ;
Navratil, Vincent ;
Emsley, Lyndon ;
Toulhoat, Pierre .
JOURNAL OF PROTEOME RESEARCH, 2011, 10 (09) :4342-4348
[7]   Two-Dimensional Statistical Recoup ling for the Identification of Perturbed Metabolic Networks from NMR Spectroscopy [J].
Blaise, Benjamin J. ;
Navratil, Vincent ;
Domange, Celine ;
Shintu, Laetitia ;
Dumas, Marc-Emmanuel ;
Elena-Herrmann, Benedicte ;
Emsley, Lyndon ;
Toulhoat, Pierre .
JOURNAL OF PROTEOME RESEARCH, 2010, 9 (09) :4513-4520
[8]   Statistical Recoupling Prior to Significance Testing in Nuclear Magnetic Resonance Based Metabonomics [J].
Blaise, Benjamin J. ;
Shintu, Laetitia ;
Elena, Benedicte ;
Emsley, Lyndon ;
Dumas, Marc-Emmanuel ;
Toulhoat, Pierre .
ANALYTICAL CHEMISTRY, 2009, 81 (15) :6242-6251
[9]   Metabolic Profiling Strategy of Caenorhabditis elegans by Whole-Organism Nuclear Magnetic Resonance [J].
Blaise, Benjamin J. ;
Giacomotto, Jean ;
Triba, Mohamed N. ;
Toulhoat, Pierre ;
Piotto, Martial ;
Emsley, Lyndon ;
Segalat, Laurent ;
Dumas, Marc-Emmanuel ;
Elena, Benedicte .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (05) :2542-2550
[10]   The Human Urine Metabolome [J].
Bouatra, Souhaila ;
Aziat, Farid ;
Mandal, Rupasri ;
Guo, An Chi ;
Wilson, Michael R. ;
Knox, Craig ;
Bjorndahl, Trent C. ;
Krishnamurthy, Ramanarayan ;
Saleem, Fozia ;
Liu, Philip ;
Dame, Zerihun T. ;
Poelzer, Jenna ;
Huynh, Jessica ;
Yallou, Faizath S. ;
Psychogios, Nick ;
Dong, Edison ;
Bogumil, Ralf ;
Roehring, Cornelia ;
Wishart, David S. .
PLOS ONE, 2013, 8 (09)