Widths of certain classes of periodic functions in L2

被引:2
作者
Shabozov, Mirgand Shabozovich [2 ]
Yusupov, Gulzorkhon Amirshoevich [1 ]
机构
[1] Tajik Natl Univ, Dushanbe 734055, Tajikistan
[2] Acad Sci Republ Tajikistan, Inst Math, Dushanbe 734063, Tajikistan
关键词
D O I
10.1016/j.jat.2012.03.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain the exact values of n-widths of some classes of periodic differentiable functions in the space L-2[0, 2 pi], satisfying the condition (integral(h)(0) omega(p)(m) (integral((r)); t) sin(gamma) beta/h tdt)(1/p) <= 1, where m, n, r is an element of N, 1/r < p <= 2,0 <= gamma <= rp - 1.0 < beta <= pi, 0 < h <= pi/n. Some further generalizations are included. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:869 / 878
页数:10
相关论文
共 18 条
  • [1] CHERNYKH NI, 1967, T MAT I AKAD NAUK SS, V88, P71
  • [2] CHERNYKH NI, 1967, MAT ZAMETKI, V2, P513
  • [3] Esinaganbetov M.G., 1999, MAT ZAMETKI, V65, P816
  • [4] Hardy Godfrey Harold, 1952, Inequalities, V2nd
  • [5] Ligun A. A., 1978, MAT ZAMETKI, V24, P785
  • [6] Pinkus A., 1985, n-Widths in Approximation Theory
  • [7] Shabozov MS, 2010, MATH NOTES+, V87, P575, DOI [10.4213/mzm7707, 10.1134/S0001434610030351]
  • [8] Shalaev V.V., 1991, UKRAINIAN MATH J, V43, P125
  • [9] Taikov L V, 1977, MAT ZAMETKI, V22, P535
  • [10] INEQUALITIES CONTAINING BEST APPROXIMATIONS AND MODULUS OF CONTINUITY OF FUNCTIONS IN L2
    TAIKOV, LV
    [J]. MATHEMATICAL NOTES, 1976, 20 (3-4) : 797 - 800