Extended nonsymmetric global Lanczos method for matrix function approximation

被引:0
|
作者
Bentbib, A. H. [1 ]
El Ghomari, M. [1 ]
Jbilou, K. [2 ,3 ]
机构
[1] Cadi Ayyad Univ, Fac Sci & Technol, Lab LAMAI, Marrakech, Morocco
[2] Univ ULCO, Lab LMPA, 50 Rue F Buisson, Calais, France
[3] Univ UM6P, Lab CSEHS, Ben Guerir, Morocco
关键词
Extended Krylov subspace; Extended moment matching; Laurent polynomial; Nonsymmetric global Lanczos method; Matrix function; BLOCK;
D O I
10.1007/s11075-020-00896-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Extended Krylov subspace methods are attractive methods for computing approximations of matrix functions and other problems producing large-scale matrices. In this work, we propose the extended nonsymmetric global Lanczos method for solving some matrix approximation problems. The derived algorithm uses short recursive relations to generate bi-orthonormal bases, with respect to the Frobenius inner product, of the corresponding extended Krylov subspacesKme(A,V) are two blocks. New algebraic properties of the proposed method are developed and applications to approximation of bothW(T)f(A)Vand trace(W(T)f(A)V) are given. Numerical examples are presented to show the performance of the extended nonsymmetric global Lanczos for these problems.
引用
收藏
页码:1459 / 1479
页数:21
相关论文
共 50 条
  • [31] Low-rank matrix approximation using the Lanczos bidiagonalization process with applications
    Simon, HD
    Zha, HY
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06): : 2257 - 2274
  • [32] The global lanczos method for MIMO interconnect order reductions
    Chu, Chia-Chi
    Lai, Ming-Hong
    Feng, Wu-Shiung
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 1103 - 1106
  • [33] Extended Multipoint Approximation Method
    Liu, Cheng-yang
    Liu, Dian-zi
    Mao, Xiao-an
    Zhou, Xue
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, SIMULATION AND MODELLING (AMSM 2017), 2017, 162 : 219 - 225
  • [34] Bounding matrix functionals via partial global block Lanczos decomposition
    Bellalij, M.
    Reichel, L.
    Rodriguez, G.
    Sadok, H.
    APPLIED NUMERICAL MATHEMATICS, 2015, 94 : 127 - 139
  • [35] Gauss-Laurent-type quadrature rules for the approximation of functionals of a nonsymmetric matrix
    Alahmadi, J.
    Alqahtani, H.
    Pranic, M. S.
    Reichel, L.
    NUMERICAL ALGORITHMS, 2021, 88 (04) : 1937 - 1964
  • [36] Gauss–Laurent-type quadrature rules for the approximation of functionals of a nonsymmetric matrix
    J. Alahmadi
    H. Alqahtani
    M. S. Pranić
    L. Reichel
    Numerical Algorithms, 2021, 88 : 1937 - 1964
  • [37] Shifted extended global Lanczos processes for trace estimation with application to network analysis
    A. H. Bentbib
    M. El Ghomari
    K. Jbilou
    L. Reichel
    Calcolo, 2021, 58
  • [38] ENHANCED MATRIX FUNCTION APPROXIMATION
    Eshghi, Nasim
    Reichel, Lothar
    Spalevic, Miodrag M.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2017, 47 : 197 - 205
  • [39] Shifted extended global Lanczos processes for trace estimation with application to network analysis
    Bentbib, A. H.
    El Ghomari, M.
    Jbilou, K.
    Reichel, L.
    CALCOLO, 2021, 58 (01)
  • [40] A new investigation of the extended Krylov subspace method for matrix function evaluations
    Knizhnerman, L.
    Simoncini, V.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (04) : 615 - 638