Ectopic expression of CsTGase enhances salt tolerance by regulating polyamine biosynthesis, antioxidant activities and Na+/K+ homeostasis in transgenic tobacco

被引:16
|
作者
Zhong, Min [1 ,3 ]
Wang, Yu [1 ]
Shu, Sheng [1 ,2 ]
Sun, Jin [1 ,2 ]
Guo, Shirong [1 ,2 ]
机构
[1] Nanjing Agr Univ, Coll Hort, Key Lab Southern Vegetable Crop Genet Improvement, Minist Agr, Nanjing 210095, Peoples R China
[2] Nanjing Agr Univ, Suqian Acad Protected Hort, Suqian 223800, Peoples R China
[3] Dept Agr & Rural Affairs Jiangsu Prov, Agr Technol Extens Stn Jingsu Prov, Nanjing 210036, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Cucumber; TGase; Polyamine; Salt stress; Ion homeostasis; Antioxidant system; DEFICIENT VARIANT STRAIN; ABIOTIC STRESS TOLERANCE; PLASMA-MEMBRANE; TRANSGLUTAMINASE ACTIVITY; SALINITY-TOLERANCE; CHLOROPLAST TRANSGLUTAMINASE; K+/NA+ HOMEOSTASIS; LEAF MESOPHYLL; GENE; SPERMIDINE;
D O I
10.1016/j.plantsci.2020.110492
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transglutaminases (TGases), mediators of the transamidation of specific proteins by polyamines (PA), play critical roles in PA metabolism in animals, but their functions and regulatory mechanisms are largely unknown in plants. In this study, we demonstrated that TGase from cucumber played a protective role in the regulation of PA metabolism under salt stress. The expression of TGase was induced by salt stress in cucumber. Ectopic overexpression of cucumber TGase in tobacco conferred enhanced tolerance to salt stress based on both external symptoms and membrane integrity. Overexpression lines maintained high levels of PAs under salt stress, suggesting that PAs played a vital role in TGase-induced salt tolerance. In contrast, the levels of Na+ content in the wild-type (WT) plants increased, while they decreased in the overexpression plants. The expression levels of several genes related to ion exchange enhanced, and the Na+/K+ ratio decreased by increased TGase activity under salt stress. The activities of the proton-pump ATPase (H+-ATPase), vacuolar H+-ATPase (V-ATPase) and vacuolar Hipyrophosphatase (PPase) were higher in the overexpression lines than in WT plants under salt stress. Moreover, the malondialdehyde (MDA) and H2O2 contents were significantly lower in the overexpression lines than in WT plants, accompanied by increased antioxidant enzyme activity. Taken together, these findings demonstrate that TGase plays protective roles in response to salt stress, which may promote plant survival by regulating PA metabolism and the Na+/K+ balance under salt stress.
引用
收藏
页数:13
相关论文
共 40 条
  • [21] Bacillus amyloliquefaciens strain Q1 inoculation enhances salt tolerance of barley seedlings by maintaining the photosynthetic capacity and intracellular Na+/K+ homeostasis
    Liu, Hongjiang
    Amoanimaa-Dede, Hanna
    Zhang, Yanli
    Wu, Xiaojian
    Deng, Fenglin
    Qin, Yuan
    Qiu, Haiping
    Ouyang, Younan
    Wang, Yanli
    Zeng, Fanrong
    PLANT GROWTH REGULATION, 2025, 105 (01) : 111 - 128
  • [22] Relative contribution of Na+/K+ homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton (Gossypium hirsutum L.) cultivars
    Wang, Ning
    Qiao, Wenqing
    Liu, Xiaohong
    Shi, Jianbin
    Xu, Qinghua
    Zhou, Hong
    Yan, Gentu
    Huang, Qun
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2017, 119 : 121 - 131
  • [23] Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress
    Abdelaziz, Mohamed E.
    Abdelsattar, Mohamed
    Abdeldaym, Emad A.
    Atia, Mohamed A. M.
    Mahmoud, Abdel Wahab M.
    Saad, Maged M.
    Hirt, Heribert
    SCIENTIA HORTICULTURAE, 2019, 256
  • [24] Calcineurin B-like protein 5 (SiCBL5) in Setaria italica enhances salt tolerance by regulating Na+ homeostasis
    Yan, Jingwei
    Yang, Lan
    Liu, Ya
    Zhao, Yingdi
    Han, Tong
    Miao, Xingfen
    Zhang, Aying
    CROP JOURNAL, 2022, 10 (01): : 234 - 242
  • [25] Exogenous spermidine improves salt tolerance of pecan-grafted seedlings via activating antioxidant system and inhibiting the enhancement of Na+/K+ ratio
    Zhiwei Wu
    Junfeng Wang
    Daoliang Yan
    Huwei Yuan
    Yang Wang
    Yi He
    Xiaofei Wang
    Zhen Li
    Jiaqi Mei
    Mengyao Hu
    Tingting Zhou
    Sun-Li Chong
    Bingsong Zheng
    Acta Physiologiae Plantarum, 2020, 42
  • [26] Exogenous SA Affects Rice Seed Germination under Salt Stress by Regulating Na+/K+ Balance and Endogenous GAs and ABA Homeostasis
    Liu, Zhiguo
    Ma, Chunyang
    Hou, Lei
    Wu, Xiuzhe
    Wang, Dan
    Zhang, Li
    Liu, Peng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (06)
  • [27] Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species
    Ding, Mingquan
    Hou, Peichen
    Shen, Xin
    Wang, Meijuan
    Deng, Shurong
    Sun, Jian
    Xiao, Fei
    Wang, Ruigang
    Zhou, Xiaoyang
    Lu, Cunfu
    Zhang, Deqiang
    Zheng, Xiaojiang
    Hu, Zanmin
    Chen, Shaoliang
    PLANT MOLECULAR BIOLOGY, 2010, 73 (03) : 251 - 269
  • [28] Overexpression of the Sorghum bicolor K+/Na+ Transporter Gene, SbSKC1, Enhances Salt Tolerance in Poplar (Populus tomentosa)
    Yao, Xinzhuan
    Chen, Mingjun
    Zhao, Degang
    Lv, Litang
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2020, 24 (02) : 304 - 310
  • [29] Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato
    Bhaskaran, Shimna
    Savithramma, D. L.
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (15) : 5561 - 5570
  • [30] Mepiquat chloride-priming induced salt tolerance during seed germination of cotton (Gossypium hirsutum L.) through regulating water transport and K+/Na+ homeostasis
    Wang, Ning
    Wang, Xiangru
    Shi, Jianbin
    Liu, Xiaohong
    Xu, Qinghua
    Zhou, Hong
    Song, Meizhen
    Yan, Gentu
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2019, 159 : 168 - 178