Review-Electrochemical Growth of Carbon Nanotubes and Graphene from Ambient Carbon Dioxide: Synergy with Conventional Gas-Phase Growth Mechanisms

被引:7
作者
Douglas, Anna [1 ,2 ,3 ]
Pint, Cary L. [1 ,2 ,3 ]
机构
[1] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[3] Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA
基金
美国国家科学基金会;
关键词
CHEMICAL-VAPOR-DEPOSITION; MOLTEN-SALTS; LITHIUM-ION; CATALYST COMPOSITION; CO2; CONVERSION; TEMPERATURE; REDUCTION; WATER; ELECTRODEPOSITION;
D O I
10.1149/2.0131706jss
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The rising levels of atmospheric CO2 threaten the promise of human sustainability on earth. Electrochemical conversion of CO2 into secondary chemicals and materials presents the most economically viable approach to solve this global challenge, and provides a method to utilize otherwisewasted CO2 as a chemical feedstock for the production of valuable products. Challenged by the processing cost versus value of converted materials, known routes for the production of hydrocarbons and alcohol products remain impractical. Electrochemical CO2 conversion into high-value carbon nanostructures presents a new area of research with the opportunity to build upon the last two decades of understanding of gas-phase synthesis processes for fullerenes, carbon nanotubes, and graphene. However, efforts so far to convert atmospheric carbon dioxide into functional carbon materials are limited by a systems-level approach that provides only coarse control over the types and quality of materials that can be synthesized. In this short review, we make a strong case for the synergy between the catalytic mechanisms that have been developed over past decades to understand carbon nanostructure growth and the emerging research area where electrochemical reduction of ambient CO2 can be used to produce carbon nanostructured materials. This presents a new opportunity for researchers to address one of the most pressing environmental issues for modern mankind with the synthesis of carbon materials that will shape our future. (C) The Author(s) 2017. Published by ECS.
引用
收藏
页码:M3084 / M3089
页数:6
相关论文
共 74 条
[11]   Diameter-dependent kinetics of activation and deactivation in carbon nanotube population growth [J].
Bedewy, Mostafa ;
Meshot, Eric R. ;
Hart, A. John .
CARBON, 2012, 50 (14) :5106-5116
[12]   Carbon nanotubes based transistors composed of single-walled carbon nanotubes mats as gas sensors: A review [J].
Bondavalli, Paolo .
COMPTES RENDUS PHYSIQUE, 2010, 11 (5-6) :389-396
[13]   Solution Assembled Single-Walled Carbon Nanotube Foams: Superior Performance in Supercapacitors, Lithium-Ion, and Lithium-Air Batteries [J].
Carter, Rachel ;
Oakes, Landon ;
Cohn, Adam P. ;
Holzgrafe, Jeffrey ;
Zarick, Holly F. ;
Chatterjee, Shahana ;
Bardhan, Rizia ;
Pint, Cary L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (35) :20137-20151
[14]   The Role of Nanostructure in Improving the Performance of Electrodes for Energy Storage and Conversion [J].
Centi, Gabriele ;
Perathoner, Siglinda .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2009, (26) :3851-3878
[15]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[16]   Study of the fluorination of carbon anode in molten KF-2HF by XPS and NMR investigations [J].
Crassous, I. ;
Groult, H. ;
Lantelme, F. ;
Devilliers, D. ;
Tressaud, A. ;
Labrugere, C. ;
Dubois, M. ;
Belhomme, C. ;
Colisson, A. ;
Morel, B. .
JOURNAL OF FLUORINE CHEMISTRY, 2009, 130 (12) :1080-1085
[17]   Carbon nanotube membranes for water purification: A bright future in water desalination [J].
Das, Rasel ;
Ali, Md Eaqub ;
Abd Hamid, Sharifah Bee ;
Ramakrishna, Seeram ;
Chowdhury, Zaira Zaman .
DESALINATION, 2014, 336 :97-109
[18]   Carbon Nanotubes: Present and Future Commercial Applications [J].
De Volder, Michael F. L. ;
Tawfick, Sameh H. ;
Baughman, Ray H. ;
Hart, A. John .
SCIENCE, 2013, 339 (6119) :535-539
[19]   Recovery of energy and chemicals from carbonaceous materials [J].
Demirbas, Ayhan ;
Ozturk, Temel ;
Demirbas, M. Fatih .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2006, 28 (16) :1473-1482
[20]   Climate-carbon cycle feedback analysis:: Results from the C4MIP model intercomparison [J].
Friedlingstein, P. ;
Cox, P. ;
Betts, R. ;
Bopp, L. ;
Von Bloh, W. ;
Brovkin, V. ;
Cadule, P. ;
Doney, S. ;
Eby, M. ;
Fung, I. ;
Bala, G. ;
John, J. ;
Jones, C. ;
Joos, F. ;
Kato, T. ;
Kawamiya, M. ;
Knorr, W. ;
Lindsay, K. ;
Matthews, H. D. ;
Raddatz, T. ;
Rayner, P. ;
Reick, C. ;
Roeckner, E. ;
Schnitzler, K. -G. ;
Schnur, R. ;
Strassmann, K. ;
Weaver, A. J. ;
Yoshikawa, C. ;
Zeng, N. .
JOURNAL OF CLIMATE, 2006, 19 (14) :3337-3353